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ABSTRACT 
This paper introduces an Anomaly-based Intrusion Detection architecture based on behavioral traffic profiles created 
by using our enhanced version of the Method of Remaining Elements (MRE). This enhanced version includes: a 
redefinition of the exposure threshold through the entropy and cardinality of residual sequences, a dual 
characterization for two types of traffic slots, the introduction of the Anomaly Level Exposure (ALE) that gives a better 
quantification of anomalies for a given traffic slot and r-feature, an alternative support that extends its detection 
capabilities, and a new procedure to obtain  the exposure threshold through an analysis of outliers on the training 
dataset. Regarding the original MRE, we incorporate the refinements outlined resulting in a reliable method, which 
gives an improved sensitivity to the detection of a broader range of attacks. The experiments were conducted on the 
MIT-DARPA dataset and also on an academic LAN by implementing real attacks. The results show that the proposed 
architecture is effective in early detection of intrusions, as well as some kind of attacks designed to bypass detection 
measures. 
 
Keywords: Anomaly-based Intrusion Detection, Method of Remaining Elements (MRE), traffic profiling, entropy.  
 
RESUMEN 
Este artículo presenta una arquitectura para la detección de intrusiones basado en anomalías cuya base referencial 
son perfiles de comportamiento del tráfico creados con nuestra versión mejorada del Método de los Elementos 
Remanentes (MRE). Esta versión de MRE incluye lo siguiente: una redefinición del umbral de exposición a través de 
la entropía y remanencia de las secuencias residuales, una caracterización simultanea para dos tipos de ranura de 
tráfico, la introducción del nivel de exposición de anomalías (ALE) brinda una mejor cuantificación de las anomalías 
para un rasgo y ranura de tráfico determinado, un soporte alternativo que extiende las capacidades de detección, y 
un nuevo procedimiento para obtener el umbral de exposición a través de un análisis de valores atípicos del conjunto 
de datos de entrenamiento. La incorporación de las mejoras señaladas proporciona un método confiable con mayor 
sensibilidad en la detección de un rango más amplio de ataques. Los experimentos se realizaron empleando la traza 
de red MIT-DARPA y en una LAN académica usando ataques reales. Los resultados muestran que la arquitectura 
propuesta es efectiva en la detección temprana de intrusiones, así como de algunos ataques diseñados para evadir 
la detección. 
 
 
 
1. Introduction 
 
Network infrastructures have become critical 
because enterprise organizations and individuals 
depend on the Internet for their daily activities. 
However, such dependence has its risks. For 
instance, an interruption of the network services 
can cause severe problems such as financial 

losses, damage or theft of confidential data, 
damage reputation of an organization, etc., [1]. 
“Targeted attacks”, [2], are events that can lead to 
disruption of network services. In particular, 
targeted attacks are one of the biggest threats to 
security and operation of an organization. They 
can affect critical infrastructure and have the 
potential of putting the general public at risk. 
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Targeted attacks have a high prevalence in the 
network. The 2008 Computer Crime and Security 
Survey, conducted by the Computer Security 
Institute and the FBI shows that 27% of the 
companies surveyed were able to detect targeted 
attacks on their computer systems, [3].  
 
Perimeter defenses, such as firewalls and 
Network-based Intrusion Detection Systems 
(NIDS), provide an important security measure 
against network attacks. However, they do not 
provide a sufficient level of protection for server-
based applications. Since many applications 
communicate with each other and with end users 
over the Internet, application-level attacks will often 
penetrate a perimeter via a legitimate access point. 
Moreover, firewalls and NIDS are unable to inspect 
encrypted (SSL) traffic, which is not decrypted until 
it reaches the host [4]. While firewalls, router-
based packet filtering, and NIDS are necessary 
components of a multi-layer security system, they 
are insufficient on their own [5,6].  
 
To overcome these drawbacks, one promising 
approach makes use of entropy to obtain 
knowledge of the structure and composition of 
traffic, summarized by behavioral traffic profiles, [7-
13]. This approach is being proposed as a good 
candidate in traffic analysis for the development of 
a new generation of NIDS. A recent proposal in 
this context is the Method of Remaining Elements 
(MRE), an entropy-based method that profiles the 
behavior of traffic slots, [14]. This method is 
applied to the early detection of worm attacks, port 
scans and DDoS attacks. MRE highlights the traffic 
slots where attacks occur by means of a parameter 
called the exposure threshold, rβ . However, an in-
depth analysis of the method revealed that certain 
attack patterns cannot be detected. Hence, there 
are some drawbacks associated with MRE which 
are mentioned as follows: 
 
1) The exposure threshold, rβ , characterizes the 
normal behavior of traffic slots for a given r-traffic 
feature (e.g., origin or destination address, origin 
or destination port) and a maximum slot duration,  

dt .=MRE learns this value through empirical 
observation of the “sets of remaining elements” in 
training datasets. Specifically, rβ  depends only on 

the maximum cardinality of the set of the remaining 
elements, denoted as rM%  . Traffic slots where the 
cardinality of the set of remaining elements is 
higher than rM% are considered anomalous. 
However, attacks such as ipsweep present 
cardinalities even much lower than rM    hence, 
they cannot be detected by a threshold based on 

rM . 
 
2) The characterization with a fixed maximum slot 
duration, i.e., dt , is unable to detect attacks whose 
Inter-Packet Time (IPT) is several times greater 
than the period of characterization. Sasser.Worm 
exhibits this type of behavior, and is considered as 
a strategy to avoid detection. 
 
3) MRE uses an index to quantify abnormalities 
called PDT, which is the percentage of difference 
between actual cardinality of the set of the 
remaining elements and rM% . However, this index 
is insufficient to detect attacks whose behavior 
does not generate enough diversity in the traffic 
features (it implies specifically that entropy cannot 
be used). An example that fits this pattern is the 
PoD attack (ping of death). 
 
4) We identified attacks where the cardinality of the 
set of remaining elements and even the entropy of 
the residual sequence do not provide the means 
for detection. These attacks generate high 
volumes of packets with identical features. Such 
features do not have an effect on the behavior of 
residual sequences. Therefore, MRE is unable to 
establish a status based on rβ  . An example is the 
back attack. 
 
5) With respect to the first drawback, it is also 
necessary to provide a procedure to obtain the 
exposure threshold rβ  through modeling the 
normal behavior on the training dataset. 
 
The main contribution of this paper is to propose a 
solution to the aforementioned disadvantages in 
order to design an extended version of MRE and 
integrate it to an anomaly-based intrusion 
detection architecture. In this sense, we propose to 
define rβ  as a function of the entropy of residual 
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sequences and the maximum cardinality of the set 
of remaining elements, in particular, 

( ) log( )r rH S Mβ = % % . The incorporation of 
entropy enables an additional support for the 
identification of anomalous behavior on traffic 
slots. In other words, rβ  defines a locus that 
separates the abnormal behavior from the benign 
one based on the entropies and cardinalities of the 
residual sequences. We also propose a dual 
characterization based on two types of slots: short-
time traffic slots (STTS) and long-time traffic slots 
(LTTS). STTS duration does not exceed 0.5 
seconds and its purpose is to detect attacks with 
high volume of traffic in short and continuous 
periods. The size of this slot is sufficient to process 
and respond quickly to the existence of malicious 
traffic. In contrast, LTTS duration does not exceed 
60 seconds. This larger slot has the ability to 
detect attacks with malicious traffic that contains 
very limited number of packets in each slot and is 
temporarily dispersed. 
 
In addition, we propose an indicator index for a 
given i-traffic slot and r-feature, called the Anomaly 
Level Exposure ( r

iALE ). This index is employed 
by our algorithm to determine the type of approach 
required to set the status (i.e., abnormal or benign) 
of an i-traffic slot under analysis. Three 
approaches that can be used are: a) entropy of 
residual sequences and the cardinality of the set of 
remaining elements, b) cardinality of the set of 
significant elements, and c) length of the sequence 
of unitary cardinality. The last two approaches are 
integrated as a support for MRE that extends the 
detection capabilities by identifying patterns of 
behavior of the attacks mentioned above. Finally, 
we propose a method to obtain the exposure 
threshold based on a fixed point-like iterative 
process, and analysis of outliers on the training 
dataset. 
 
Application of this procedure improves the 
accuracy and efficiency of traffic characterization 
compared with the approach used in, [14]. 
Therefore, the resulting behavioral profiles produce 
a better anomaly detection capability. Also, it is 
important to mention that the detection system that 
we propose is independent of the network 
architecture since it only needs to capture and 

process the packet features necessary to detect 
intrusion. 
 
With respect to detection performance of our 
architecture, we considered two scenarios. In the 
first one, we implemented true worm attacks within 
an academic LAN that varied in their propagation 
rates as well as in their scanning techniques. In the 
second one, the scenario consisted in studying the 
performance detection by using the MIT-DARPA 
traces that were organized in two main groups, the 
Denial of Service (DoS) attacks such as PoD, 
neptune, back and smurf; and the Probes with 
attacks such as satan, portsweep and ipsweep. 
Our architecture detected all of them except the 
satan attack. This approach used by considering 
the MIT-DARPA traces allows us to set up a 
performance study under extremely valuable 
intrusion detection public domain datasets, which 
provide a performance benchmark for detection 
and prevention systems as mentioned in [15]. 
 
2. Network-based Intrusion Detection Systems 
 
There are two main approaches to design Network 
Intrusion Detection Systems (NIDS): misuse 
(signature-based) detection and anomaly 
(behavior-based) detection [6, 16]. Signature-
based (S-NIDS) e.g., Snort, [17], employ pattern 
recognition techniques, i.e., they have a database 
with the known attack signatures and match these 
signatures with the analyzed data, when one 
similarity is found an alarm is activated. 
Nevertheless, S-NIDSs are incapable of detecting 
attacks that are not represented in its knowledge 
base. Anomaly-based (A-NIDS) e.g., PAYL, [18], 
first builds the statistical model describing the 
network's normal behavior (i.e., a behavioral profile 
from training data), and then warns any behavior 
that deviates from the model. A-NIDS has the 
advantage over S-NIDS to detect new types of 
attacks (zero-day attacks) as soon as they appear, 
another advantage is the response time which is in 
the order of seconds contrasting with hours or 
even days that may require an S-NIDS. Anomaly 
detection has long been suggested as a promising 
approach to detect previously unknown attacks. 
However, it faces several challenges e.g., evasive 
attacks might try to confuse IDS with fragmented, 
encrypted, tunneled, or junk packets. Hence, a 
recent proposal is to use the principles of entropy 
to obtain knowledge about behavior of traffic 
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features, such as the source and destination IP 
packet addresses, the source and destination port 
numbers, the type of protocol, the number of bytes 
per packet, the time elapsed between packets, 
etc., to build a profile of the network's normal 
behavior. This profile serves as a baseline in 
detecting anomalies. 
 
3. Measures of Entropy 
 
MRE, proposed in [14], is a traffic profiling method 
that uses an entropy estimator called the Balanced 
Estimator-II and from this, the proportional 
uncertainty, (PU) is defined, which is a measure of 
uncertainty. rβ  is a value of proportional 
uncertainty that characterizes the traffic slot's 
normal behavior for a given r-feature and a 
maximum duration slot,= dt . The measurements of 
uncertainty of the traffic slots are processed with 
respect to this threshold and subsidiary 
measurements to determine its status. The 
mathematical descriptions of these measures are 
presented in the following subsections. 
 
3.1  Balanced Estimator-II 
 
Consider a discrete dataset X of size N where a 
finite number M of elements form the dataset's 
alphabet, 1 2{ , , ..., }Mx x x=A . Let kn  be the 

number of times the value kx  appears in the 

dataset, thus, we have 1
M

kk n N= =∑ . An estimate 
of Shannon’s entropy can be obtained by the low-
bias balanced estimator, [19], which is defined as 
 

( )
2

1 2

1 11
2

+

= = +

⎡ ⎤
⎢ ⎥
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⎣ ⎦

= +
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M N
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k

kk j n
XH n

N j
.           (1) 

 
The second summation in (1) can be represented 
as a partial harmonic series or equivalently, as a 
harmonic number. A harmonic number is a number 
of the form 

   
1

1
=

= ∑Hn
k

n

k
  .                      (2) 

 
 
 
 

A harmonic number of the form (2) can be 
expressed analytically as 

 
1= γ + Ψ +H ( )n n .                      (3) 

 
where 0.5772156649=γ  is the Euler-Mascheroni 
constant, [20], and ( 1)nΨ +  is the digamma 
function with corresponding asymptotic expansion 
that gives 

 
1 2 4 61 2 1 12 1 120 1 250− − − −+ + − + − +γ LH ( ) ) ) )( ( (log( )~n n n n n n (4) 

 
By rearranging the second summation in (1), and 
using the definition of a harmonic number in (2), 
we may express it in terms of two harmonic 
numbers, 
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2 1 1
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+

+
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using (4), this difference in harmonic numbers can 
be represented as 
 

2 21 1
2
1

ρ ρ+ ++ +
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− + −⎜ ⎟
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=H H log ,
kN N kn

k
n

N
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   (6) 

 
where 2Nρ +  and 1knρ + approach the same value 

C when N and kn increase indefinitely, hence the 

difference 2 1N knρ ρ+ +− napproaches zero. A 
more computationally efficient expression for (1) 
can be obtained by replacing the second 
summation in (1) by (6) to get the Balanced 
Estimator-II, 
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The condition that maximizes (7) occurs when 
kx ’s frequencies are minimal, i.e., 1kn =  where 

1,2, ,k M= L ; under this condition, the size of 
the alphabet is equal to the size of the dataset, i.e., 
M N= . Therefore, the maximum value of (7) is 
given by 
 

2 2ˆ log
2 2

( )MAX
bal II M MH

M
X− +⎛ ⎞

⎜ ⎟+ ⎝ ⎠
= .          (8) 

 
3.2 Proportional Uncertainty 
 
The proportional uncertainty, PU, [14], is an index 
of uncertainty regarding the maximum value of 
Shannon´s entropy in a dataset. For a discrete 
dataset X, PU is defined as, 
 

( )2 2
2 2 2

+−
+

→∞
= =≤

ˆ log( )
( )

log( ) log( )
lim

M Mbal II
M

M

H X
PU X

M M
, for 

1M >                                                               (9) 
 

Max-relPU   is defined as the maximum PU for a 
given alphabet size M, its value is given by 
  
 
 
 

( )1 2−≤ = ≤Max‐rel
ˆ log( )( )MAX
bal IIPU X H X M .     (10) 

 
Values of Max-relPU  for different alphabet sizes 
are shown in Figure 1. Max-relPU  determines the 
upper limit of the exposure threshold rβ  for a 
given alphabet size M. 
 
4. The Enhanced Method of Remaining 
Elements 
 
Let the analyzed i-th traffic slot be described by the  

1
iS , 2

iS , 3
iS and 4

iS  sequences, which represents 
the source IP address, destination IP address, 
source port, and destination port, respectively, of 
the iW  packets arriving during the i-th traffic slot.  
Traffic slots do not overlap each other and have 
maximum slot duration of dt  seconds. r

iS  

sequences, where 1,2,3,4r = , constitute the in- 
put sequences to the MRE algorithm. MRE applies  
to  them an i terat ive  process of  removal  
of  its significant elements (significant elements are  
those with the higher frequency). While the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. PU's maximum value for different alphabet sizes. 
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iterative removal of significant elements is carried 
out, the input sequence is identified as sequence 
in progress, and is denoted by ,

r
i jS , where j is the 

iteration number. The resulting sequence, when 
the algorithm stops is called the residual sequence 
and is denoted by r

iS% . The cardinality of the set of 
the remaining elements in the residual sequence is 
denoted by r

iR , where 1r
iR ≥ .On the other hand, 

the cardinality of the set of the significant 
elements, i.e., those not belonging to r

iS% is denoted 

by r
iI , where 0r

iI ≥ .The j-iterative process of 
removing significant elements is performed while 
two conditions are met: 1) the proportional 
uncertainty of the sequence in process is less than 
an exposure threshold rβ , i.e., ,( )i j r

rPU β≤S , and 
2) the alphabet of the sequence in process is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

greater than two, this is , 2i j
r >| S | .Figure 2 shows 

Algorithm 1 to determine r
iS% , r

iR , and r
iI , given 

an=input=sequence= r
iS =and.an.exposure

threshold rβ . We can say that the exposure 

threshold rβ  is the level of proportional uncertainty  
that might reach a sequence in process during the 
removal process of significant elements.  

 
There are two cases where a sequence in process 
does not reach this threshold; the first case occurs 
on sequences with alphabet size 1r

i =|| S ; for these 

sequences 1r
iR = . The second case occurs when 

the input sequences have low diversity in such a 
way that the entropy of the sequence in process, 
i.e., ,

ˆ ( )bal II r
i jH − S , is not increased as its  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Algorithm 1 to obtain r
iS% , r

iR  , and  r
iI  given a input sequence r

iS and  a  rβ . Table 
T, consists of (a, b) value pairs, a means frequency and b is a particular r-instance (i.e., a IP 

address or port number value). 

1:   Parameters: r
iS , rβ  

2:   Items = | r
iS |   

3:   if  (Items = = 1) 
4:      0r

iI =  , Itemsr
iR =  

5:   else 
6:      compute PU( r

iS , rβ ) 
7:      if  ( rPU β≥  ) 
8:         r

iI  = 0, r
iR = Items  

9:      else 
10:        build table T    
11:        sort T  // decreasing order 
12:        PU = 0, j = 1, , j

r r
i i=S S  

13:        while (PU <= βr &&  | , j
r
iS | > 2 ) do 

14:           , j
r
iS  = , j

r
iS  \ T( b ( j ) )  // remove j element  

15:            compute PU ( , j
r
iS , βr ) 

16:             j++ 
17:        end while 
18:         1r

iI j= −   
19:         Itemsr r

i iR I= −  
20:         , j

r r
i i=S S%  

21:    end if 
22:  end if 
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significant elements are removed, i.e., the relation 

, ,
ˆ ( ) log( ) r
bal II r r

i j i jH R β− ≥S is never fulfilled. 

Under this condition r
iR inexorably becomes 

2r
iR =  . Both the maximum traffic slot duration 

and the exposure threshold determine the values 
of r

iS% , r
iR , and  r

iI , i.e., changing  rβ or dt can 
lead to different values of them, this is because   

rβ  determinates  the  separation  condition  of  the  

significant elements of  ,
r
i jS and moreover, the 

value of rβ was obtained for a given dt in the 
training phase. 
 
 
4.1  Exposure of Anomalies and MRE Support 
 
Exposure of anomalies aims to highlight the traffic 
slots whose residual sequences, S%  exceed a 

certain level of entropy ( )H S%  for a given residual 

alphabet size rM% . The boundary separating the 
normal from the anomalous behavior is given by 
the exposure threshold, rβ . This threshold is a 
behavioral traffic profile that is learned during the 
training phase by processing traffic slots with a 
maximum duration of dt  seconds. rβ  is described 
by a two variable discrete function, where the 
proportion of entropy and alphabet size of the 
residual sequences satisfy 
 

β=S% %( )( ) log r rH M .                     (11) 
 
For a given rβ , there are pairs of values ( )H S% and   

rM% associated with residual sequences that 
satisfy Equation (11), such values define a curve 
or function. Figure 3 presents in a semilog plot 
several functions of exposure thresholds. In 
general, each function defines the conditions of 
both alphabet size and entropy of residual 
sequences to determine the analyzed sequence’s 
status (i.e., benign or anomalous).  
 
The Anomaly Level Exposure, ALE in a traffic slot i 
and r-feature is defined as 

 
2= −r r

i iALE R .                         (12) 
 
This indicator index summarizes the behavior of 
the sequences in terms of exposure of anomalies. 
More concretely, in typical traffic (i.e., free of 
attacks) and typical working hours, the residual 
sequences satisfy ( )r riPU β<S%  with residual 

cardinalities | | 2r
i

r
iR = =S%  and 0r

iALE = , hence 
they are considered anomaly free (under reserve).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In anomalous  conditions,  the  residual sequences 
have a proportional uncertainty such as 

( )( ) logr r ri iH R β≥S% , with residual cardinalities 

| | 2r
i

r
iR = >S%  and 0r

iALE > , this "highlights" or 
exhibits its anomalous condition.  Finally, when the 
residual sequences have cardinalities 

| | 1r
i

r
iR = =S% , and hence 1r

iALE = − , it is not 
possible to define the status condition by means of 

r
iALE . 

 
MRE support addresses the two issues outlined 
above: the “under reserve” and unitary 
cardinalities. The first relates to detecting attacks 
whose behavior does not allow detection by the 

Figure 3. The rM% and ( )H S%  relation with 
different exposure thresholds. 
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ALE index. Specifically, this occurs when malign 
traffic does not affect the residual sequence’s 
properties but its counterpart (the one formed by 
significant elements). Therefore, we define a 
behavioral profile for r

iI by a threshold for the 

maximum value of r
iI  which is denoted as rI . For 

the other case, similarly we defined a behavioral 
profile for the length of the unitary cardinality 
sequences, r

iU . The profile is the threshold of its 

maximum length which is denoted as rU . 
 
 
4.2  Exposure Threshold Algorithm 
 
The exposure threshold is obtained through 
knowledge of the network using training datasets 
comprised of typical traffic traces. The minimum 
recommended size of the dataset is a week of 
typical traffic. The traffic traces analyzed belong to 
many open traffic sessions of different origin-
destination pairs. Such traces can contain 
contiguous or non-contiguous messages due to 
the aggregation suffered through the network 
nodes.  
 
Figure 4 shows the algorithms 2 and 3 to  
obtain rβ  through fixed-point iterations using these 

datasets. In algorithm 2, the input sequence r
iS    

given a maximum slot duration dt , is introduced to 
MRE with feedback using an initial cutoff threshold 
B initialβ β=  to return the residual sequence’s  PU 

and then feed back again if BAβ β> . The initial 

cutoff threshold is defined as 1initialβ = . The 
objective of the algorithm is to determine the 
maximum cutoff threshold  (i.e., the exposure 
threshold) for the sequence r

iS . Algorithm 3 
delivers the value of proportional uncertainty 
required by algorithm 2, and seeks to raise the 
entropy of the sequence in process by extracting 
significant elements to reach the cutoff 
threshold Bβ . Finally, the maximum cutoff 

threshold for the sequence r
iS  is reported as iβ . 

 
 
 

Algorithm 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Algorithm 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The processing of the sequences r

iS belonging to 
a given training traffic trace generates a vector of 
iβ  -thresholds  denoted as  trace 1 2[ ]mr β β β=β L , 

where m is the number of traffic slots that form the 
trace. Vector  tracerβ  is statistically analyzed to  
 
 

1:    % Input data 
2:     βB = 1.0;    % initial β 
3:     X = r

iS ;  % input sequence 
4:    dt ; % maximum slot duration    
5:     βA = fnbeta ( X, βB  );   
6:     while ( βA  >  βB  ) 
7:                  βB  =  βA ; 
8:                  βA  = fnbeta ( X,  βA  );  
9:     end 
10:   βi = max( βA, βB ); 

Figure 4. Algorithms used to obtain the 
exposure thresholds. 

1:   function B = fnbeta ( r
iS , β ) 

2:   if    | r
iS | = = 1  ||  | r

iS | = = 2 
3:          B = 0; 
4:   else 
5:          PU = H( r

iS ) / log ( | r
iS |  ); 

6:          j = 0;  ,
r r
i j i=S S ; 

7:          while ( PU β≤  && , 2j
r
i|S |> ) 

8:                 j++ ; 
9:                 ( ), , 1 ( )\r r

i j i j b j−=S S T ; 
%removing 

10:  , , ,( ) ( ) / log( | | )r r r
i j i j i jPU H=S S S ; 

11:         end 
12:         B= PU; 
13:  end  
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determine the exposure threshold of the whole 
traffic trace. This process is summarized in Figure 
5. The first stage decimates the input vector tracerβ  

to remove the values that have a threshold 1iβ = ,  
which is the minimum value of PU in the context of 
exposure of anomalies; the new vector is denoted 
as 1Drβ .  Stage two explores the existence of 

outliers in 1Drβ ; if there are no outliers, 1Drβ  is 
transmitted to stage five, otherwise, an analysis of 
outliers (stage three and four)  in 1Drβ i s   
per formed.   Stage three sets the threshold 
for outliers, represented by the upper limit Ls . In 
this way, the thresholds tracei rβ ∈β  such that 

i Lsβ >  are regarded as outliers. The upper limit 
is calculated as 
 

33 1= + −( )Ls Q w Q Q ,                          (13) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where 1Q and 3Q are the first and third quartile, 
respectively, w is maximum whisker length, the 
default 1.5 corresponds to approximately 2.7σ± , 

[21], whereσ is the standard deviation of 1Drβ . 

Stage four decimates the vector 1Drβ  to remove all 
values below Ls , thus a new vector is formed, 
denoted as 2Drβ  which contains the outliers of 

1Drβ . The fifth stage processes the decimated 

vectors either 1Drβ  or 2Drβ  to be characterized by 

a percentile (e.g., 95%). The  tracerβ  values 
generated by each training trace, finally are 
averaged to obtain the exposure threshold for the 
respective intrinsic r-feature, i.e., 

 
traceβ β=r r .                            (14) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Stages to obtain tracerβ . 
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4.3 MRE-based Intrusion Detection System 
Architecture 
 
The architecture for an A-NIDS based on MRE is 
summarized in Figure 6. The training phase is 
responsible for building the behavioral profiles for 
the two types of defined traffic slots: STTS and 
LTTS. The profiles for a given r-feature are 
represented by the following parameters: 1) 
exposure threshold, rβ , 2) threshold for the 

maximum value of r
iI ,  denoted as rI , and 3) 

threshold for the maximum value of  r
iU , denoted 

as rU . Experimentally, we found that the best 
performance detection was achieved with a 
maximum slot duration, 0.5dt =  seconds for 

STTS, and 60dt =  seconds for LTTS. Having 
defined the profiles the next step is to obtain 
current traffic measurements in order to determine 
the status of traffic slot i. The measurements are: 
1) Cardinality of the set of the remaining elements, 
r
iR . 2) Cardinality of the set of the significant 

elements, r
iI . 3) Length of the unitary  cardinality  

sequence,  r
iU .  The diagnosis defines the status 

of analyzed i-th traffic slot based on any of the 
following approaches for detection: a) r

iR and  

( )riH S%  versus rM% and ( )H S% . b) r
iI  versus rI . c)   

r
iU versus rU . r

iALE    defines the selection of 
the approach to use. A deviation of the 
measurement with respect to the profile is 
regarded as an anomaly. 

One of the most valuable features of the presented 
architecture is that it does not need to compare 
chunks involving a fixed number of contiguous 
messages in order to detect anomalies; also it 
does not need to analyze chunks with the same 
number of messages in order to detect anomalies. 
 
5. Experimental Platform, Dataset, and Tools 
 
The evaluation of MRE was conducted in two 
different scenarios: the first scenario (labeled as 
SC1) is an academic LAN which is subdivided into 
four subnets (192.168.1.0, 192.168.2.0, 
192.168.4.0, and 10.253.253.0). There are 100 
hosts running Windows XP SP2 mainly. One router  
(192.168.1.1) connects the subnets with 10 
Ethernet switches and 18 IEEE 802.11b/g wireless 
access points. The data rate of the core network is 
100Mbps. A sector of the network is left vulnerable 
for worm propagation experiments, with ten not 
patched Windows XP stations (192.168.1.104 – 
113). In the experiments Blaster, Sasser, and 
Welchia worms were released in the  
vulnerable sector. The scanning port attack was 
observed on the proxy server (192.168.4.253). The 
dataset was collected by a network sniffer tool 
based on libpcap library used by tcpdump, [22]. 
The dataset contains traces corresponding to 30 
days of standard traffic in user’s typical working 
hours. These traces were arranged into five 
datasets (SCx-D1 to SCx-D5) comprised of six 
traces each (SCx-Dy-01 to SCx-Dy-06), to be used 
for training purposes. The trace files in this 
collection contain TCP traffic and a total of 32.6 
million packets. In addition, the dataset SC1-D6 is 
comprised of four traces, three traces correspond 
to worm attacks, and the last one to a portscan  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Architecture for an A-NIDS based on MRE. 
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attack. All traces were cleaned to remove spurious  
data using plab, a platform for packet capture and 
analysis, [23]. Traces were split into segments 
using tracesplit which is a tool that belongs to 
Libtrace, [24]. The traffic files in ASCII format 
suitable  for  MATLAB®  processing  were  created  

with ipsumdump, [25]. The second scenario (SC2), 
is based on a sub-set of the 1998 MIT-DARPA 
data, [26], public benchmark for testing NIDS, adds 
six more attacks to our experiments. Table 1 gives 
an overview of the attacks in their respective 
scenarios that were evaluated in this paper. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Attack 
 

 
Description 

 
Trace 

 
Portscan 
 
 

 
Reconnaissance from forged (spoofed) addresses used to discover 
open ports  

 
SC1-D6-01 

 
Blaster 
 
 

 
Computer worm that propagates by exploiting the Microsoft 
Windows DCOM RPC Interface Buffer Overrun Vulnerability   

 
SC1-D6-02 

 
sasser 
 
 
 

 
Computer worm that attempts to exploit the vulnerability in LSASS. It 
spreads by scanning the randomly selected IP addresses for 
vulnerable systems. 

 
SC1-D6-03 

 
welchia 
 
 

 
Computer worm that exploits multiple vulnerabilities, including: 
DCOM RPC vulnerability, and the WebDav vulnerability 

 
SC1-D6-04 

 
pod 
 

 
Denial of service ping of death 

 
SC2-D1-01 

 
smurf 
 

 
Denial of service ICMP echo reply flood 

 
SC2-D1-02 

 
neptune 
 

 
Syn flood denial of service on one or more ports 

 
SC2-D1-03 

 
portsweep 
 
 

 
Surveillance sweep through many ports to determine which services 
are supported on a single host 

 
SC2-D1-04 

 
ipsweep 

 
Surveillance sweep performing either a port sweep or ping on 
multiple host addresses 
 

 
SC2-D1-05 

 
back 
 
 

 
Denial of service attack against apache webserver where a client 
requests a URL containing many backslashes 

 
SC2-D1-06 

 
Table 1. Description of the attacks. 
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6. Obtaining the Exposure Threshold 
 
Table 2 shows the results of the dataset SC1-D5 
processing using STTS. The exposure 
threshold rβ  is obtained by means of the average 

trace
rβ in every r-feature. Figures 7a and 7b 

summarize the evolution (five weeks) of the 
exposure thresholds for the five training datasets 
that comprise the scenario one (SC1), obtained for  
STTS and LTTS i.e.  0.5dt = ..s and  60dt = s. 
 
7. Detection of Attacks 
 
Datasets  SC1-D6 and SC2-D1 belonging to 
scenarios   1    and    2,   respectively,   were  used    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
to evaluate the performance detection of our 
proposed architecture. Table 3 summarizes the 
anomalies caused by the activity of the attacks and 
those that were detected by our architecture; the 
first and second columns are the number of slot 
and r-feature compromised by the attack. The third 
column indicates the type of traffic slot in which the 
detection was achieved. The fourth column gives 
the value or range of ALE corresponding to the 
compromised traffic slots. The fifth and sixth 
columns are support parameters. The seventh 
column indicates the detection approach used. The 
eighth column indicates type of traffic by protocol 
where the attack was present. The ninth column 
indicates the scenario where the attack took place. 
Finally, the tenth column gives the name of the 
attack. 
 

Trace tracerβ (srcIP) tracerβ (dstIP) tracerβ (srcPrt) tracerβ (dstPrt) 

SC1-D5-01 1.276 1.344 1.465 1.448 
SC1-D5-02 1.379 1.409 1.497 1.482 
SC1-D5-03 1.342 1.421 1.539 1.49 
SC1-D5-04 1.354 1.379 1.517 1.577 
SC1-D5-05 1.372 1.398 1.509 1.455 
SC1-D5-06 1.349 1.379 1.53 1.49 

trace
r rβ β=  1.345 1.388 1.510 1.490 

Table 2. Traffic traces processed of dataset SC1-D5 to obtain  rβ , for  0.5dt =  s. 

Figure 7.  rβ  for the training datasets in SC1, where (a)  0.5dt = s, and (b) 60dt = s. 
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For the detection of the portscan attack, it was 
sufficient to use STTS. In particular, 25 traffic slots 
located between slots 95 and 162 had anomalous 
behavior with 0r

iALE > . These anomalies were 
caused by a portscan attack by using spoofed 
source IP addresses; it was a targeted attack 
against the proxy server. Figure 8a shows a r

iR  

plot for the feature 1r =  (i.e., source IP address), 
we can see that the attack is exposed during the  
compromised traffic slots and subsequently traffic 
returns.to.its.normal.behavior,because 0r

iALE = . 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8b shows a r

iR plot for the same attack, but 

now for the compromised feature 4r =  , similarly 
the attack is exposed with  0r

iALE > . However, 
we can appreciate in Figure 8b four anomalous 
slots, but a forensic analysis showed that it was 
benign traffic scan. In this case, the activity of 
attack as soon as it appears, it produces changes 
in the behavior of the traffic slot, consequently it 
generates the anomaly and, hence an alert can be 
issued. 
 
 
 

Compromised Slot 
type ALE range r

iI  r
iU  

 
Approach 
detection 

Protocol scenario Attack i r 

 
95 to 
 162 

 

 
1, 4 

 
STTS 

 
13 to 44 

 
- 

 
- 

 
1 

 
TCP 

 
SC1 

 
portscan 

 
195 to 
4521 

 
2, 4 

 
STTS 

 
22 to 336 

 
- 

 
- 

 
1 

 
TCP 

 
SC1 

 
blaster 

 
1 to 33 

 

 
1, 2 

 
LTTS 

 
125 to 
2334 

 
- 

 
- 

 
1 

 
TCP 

 
SC1 

 
sasser 

 
42 to 
3875 

 
2 

 
STTS 

 
49 to 452 

 
- 

 
- 

 
1 

 
ICMP 

 
SC1 

 
welchia 

 
2 to 71 

 
1 

 
STTS 

 
326 to 503 

 
- 

 
- 

 
1 

 
ICMP 

 
SC2 

 
smurf 
 

 
5550 

 
3 

 
STTS 

 
12 

 
- 

 
- 

 
1 

 
TCP 

 
SC2 

 
neptune 
 

 
7743 

 

 
3, 4 

 
STTS 

 
65 

 
- 

 
- 

 
1 

 
TCP 

 
SC2 

 
portsweep 

 
607 to 
698 

 
3, 4 

 
LTTS 

 
18 to 27 

 
- 

 
- 

 
1 

 
TCP 

 
SC2 

 
ipsweep 

 
10 and 

11 

 
1, 2 

 
STTS 

 
-1 

 
- 

 
406, 
44 

 
3 

 
ICMP 

 
SC2 

 
pod 

 
328 to 
338 

 
3, 4 

 
LTTS 

 
NA 

 
89 to 
103 

 
- 

 
2 

 
TCP 

 
SC2 

 
back 

 
Table 3. Summary of the analyzed attacks.
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Another attack in SC1 is shown in Figure 9, that 
corresponds to the Blaster worm attack, the 
affected features are 2r = and  4r = , and their 
exposure levels are higher than the port scan 
attack, this attack lasted 38 minutes and similarly 
its detection was handled with STTS. The following 
attacks: sasser, welchia, smurf, neptune, 
portsweep, and ipsweep were also timely 
detectable by the level of exposure as shown in 
Table 3. 
 
On the other hand, in scenario 2 some attacks 
cannot be directly detected by ALE, in particular, 
pod and back attacks, under such situations the 
support to MRE is used. The anomaly detection is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
based on the maximum length of the unitary 
cardinality sequences, denoted by rU . It is also 
supported by the typical level of significance, 
denoted by rI . Our empirical observations on the 
training datasets allowed us to define the 
thresholds for the two above parameters as 

5rU =  and 42rI = . 
 
 
The anomalies caused by Ping of death (pod) 
attack generated two very long sequences of  
unitary cardinality and consequently an 1ALE = − . 
In particular, 1,2

10 406r
iU =
= = , and 1,2

11 44r
iU =
= = , the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Portscan attack detected in trace SC1-D6-01 in features: (a) srcIP, and (b) dstPrt. 

Figure 9. Blaster worm attack detected in features: (a) srcIP, and (b) dstPrt. 
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compromised features are   1r =  and 2r =  , 
respectively. r

iU  in both traffic slots had a 

deviation from the value defined by 5rU = , this 
indicates the anomaly and the consequent 
detected attack. 
 
The back attack presents characteristics that also 
require the support of MRE, back is an attack of 
DoS, where there is an attacker (135.8.60.182) 
and a target  (172.16.114.50). Each attack session 
lasts 0.162 seconds and consists of 61 packets. 
The approximate total duration of the attack is 11 
minutes. Features 3r =  and 4r = are affected, 
however, because the attack generates a large 
volume of packets related to these features, the 
anomalous attacks do not appear in any residual 
sequence, and therefore the anomalies are 
absorbed by the significant component r

iI . An 
analysis of significance elements allowed us to 
discover the deviation from the threshold  42rI =  
in the compromised slots, as shown in Figure 10 
and Table 3. 
 
8. Conclusions 
 
We have presented an architecture developed to 
perform traffic profiling and intrusion detection 
based on our enhancement of the Method of 
Remaining Elements (MRE). Our experimental 
results indicate that our approach is very 
promising, and applicable to anomaly intrusion  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
detection systems. In particular, the Anomaly- 
based NIDS proposed in this paper uses training 
datasets to characterize the behavior for two types 
of traffic slots in terms of an exposure threshold; a 
threshold for the cardinality of significant elements, 
and a threshold for length for unitary cardinality 
sequences.  Thus, changes in the properties of 
sequences with malicious traffic can be detected 
as anomalies by using one of the three proposed 
approaches for detection. The experimental results 
carried out in two scenarios (an academic LAN and 
the MIT-DARPA dataset) showed that the traffic 
characterization by means of the exposure 
threshold (defined through an algorithm based on 
fixed-point iterations and a fixed point-like iterative 
process) provides a better sensitivity to detect 
intrusions with respect to the previous proposal. 
Furthermore, we achieved a significant 
improvement by incorporating an MRE support for 
the detection of other types of attacks which are 
not sensitive to the Anomaly Level Exposure 
(ALE). Future work aims to develop a hardware 
implementation for MRE. 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Back attack detected by a significance analysis in features: (a) srcIP, and (b) dstPrt. 
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