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Abstract 

In this paper, a technique for detecting anomalous behavior traffic in a computer network is presented. Entropy space 
method is based on a 3D-space built on a flow-packet level. The complete set of points obtained in the 3D-space can be 
seen as a data cloud. Each 3D point in the space is a value of the obtained clusters for each slot of the network traffic. The 
selected features for the set of points are done by applying Pattern Recognition, Principal Component Analysis, and 
Kernel Density Estimation. At the next stage, the network traffic can be modelled by using Gaussian Mixtures and 
Extreme Generalized Distributions, which define the behavior of each selected feature. By integrating this model in an 
Anomaly-based Intrusion Detection System, anomalous behaviour traffic can be detected easily and early. The 
effectiveness and feasibility of this model was tested in a Local Area Network of a Campus.  
 
© 2012 Published by Elsevier Ltd.  
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1. Introduction  

Identification and early detection of anomalous activities on computer networks are the main goals to be 
performed by a Network Intrusion Detection System, or NIDS. Despite that the firewalls can be sufficient to 
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protect a computer network; several times they are not able to prevent a wide type of attacks such as internal 
attacks.  Besides, when someone wants to use a NIDS, software updates against new attacks are not available 
in a reasonable time. It means that the NIDS is not able to detect zero-day attacks until the database is 
updated. Thus, these novel attacks cannot be counteracted immediately [1]. 

This disadvantage is a common characteristic of signature-based NIDS (S-NIDS). Snort [2] is an example 
of S-NIDS. The operation of S-NIDS is based on a well-known database. This database contains a set of 
signatures, each signature for each known attack. When an attack arises in a computer network, the S-NIDS 
extracts a signature of the anomalous traffic and compares this signature against the database. If a match is 
found in the database, the S-NIDS launches an alarm to the system. It is evident that if a never seen attack 
arises, S-NIDS won’t be able to detect it. To overcome this disadvantage, a system with different approach 
has been developed. This system is named Anomaly-based NIDS (A-NIDS).To perform its duties, an A-NIDS 
has to construct a reliable statistical model by extracting selected traffic features. Then, when the current 
network traffic is captured, it is compared against the obtained traffic model. A significant deviation between 
the model and the current traffic means an anomalous behavior, but it does not mean an attack itself. The 
main advantage of A-NIDS relies on the early detection of zero-day attacks by using the network model. An 
example of A-NIDS is PAYL [3]. Despite of the advantages of A-NIDS, S-NIDS are easier to be configured 
and deployed rather than A-NIDS. 

Entropy-based methods have been widely investigated and discussed in recent years. These methods have 
shown to be viable for the task of automatic intrusion detection because they offer more fine-grained insights 
of the structure and composition of network traffic. Entropy-based characterizations are less affected by 
traffic sampling processes applied in high speed networks.  Consequently, entropy methods become more 
robust for the task of intrusion detection in sampled environment; this is because entropy preserves the 
structure of an attack [4, 5]. 

There are different ways to perform anomaly analysis by using entropy techniques. The first one is related 
to packet-independent treatment. Under this analysis, each feature is extracted from each packet and collected 
in the corresponding feature set under a defined window-time, thus forming independent feature sets. For 
instance, if we choose to collect a set of features such as source IP, IP destination, source Port and Port 
destination, these features are extracted from each packet. Each feature set is formed under a computable and 
reasonable window-time, normally 0.5t s for short time periods or 60t s for long time periods. Such time 
definition is established according to the detection accuracy because some attacks are more sensible to the 
window-time than others. After that, the entropy is computed for each feature set. In addition, the window 
time can be defined as static window-time or sliced window-time [6, 7]. The former means to sample the 
network traffic by using the window-time. This is done in such way that the beginning and the end of each 
window-time do not overlap with another, thus forming independent slots. The latter means overlapping each 
window-time by adding-dropping a packet when a new packet arises in the network traffic. Thus, the entropy 
is dynamically computed because when a new packet arises, the oldest packet is dropped and the new packet 
is added. As consequence, the features of the oldest packet are dropped and the features of the new packet are 
added to the corresponding feature set. An advantage of using sliced window-time is to obtain accurate 
changes in the network traffic behavior on-the-fly [8]. 

This type of analysis (and their variants) is reliable and accurate because each packet feature is taken into 
account. Nevertheless, it is not recommended for large networks with huge amount of traffic. In the case of 
large networks, there is an anomaly analysis under a flow-packet treatment. It is described throughout the rest 
of the paper, especially in the next section. The main advantage of this analysis is that the amount of data 
obtained is classified and shrunk in such way that the relevant data are extracted, so the redundant data are 
discarded. Thus, the entropy can be obtained by using only relevant data of the network traffic. Nevertheless, 
it implies to preserve original features of the network traffic to obtain accurate results.  



99 Pablo Velarde-Alvarado et al.  /  Procedia Technology   3  ( 2012 )  97 – 108 

A flow-packet is a set of unidirectional packet sequences that have common values on each header packet: 
source IP, source port, destination IP, destination port and protocol (5-tuple), even though there is a freedom 
to define other features to form a flow [9].  A notorious difference regards to packet-independent treatment is 
that each feature is organized by feature keys (it is described in the next section). 

For the rest of the paper, the flow-packet treatment is used. Each flow-packet has an inter-flow gap of 60 
seconds. It means that between the first and the last packet the time should not be more than 60 seconds.  By 
using these flow-packets, a methodology is proposed to build a behavior traffic profile of the computer 
network. The obtained profile helps to perform detection tasks. In the training phase, the flow-packets are 
organized as groups and represented by 3D entropy values by plotting a set of points. These set of points, seen 
as a point-clouds, can be treated by using Pattern Recognition. Feature extraction and selection can define a 
behavior model for normal traffic. After that, it is possible to use supervised classification to identify traffic 
slots with normal or anomalous traffic. Thus, an A-NIDS is proposed and described. The A-NIDS is able to 
analyze the network traffic by using packet features under a flow-packet traffic definition.  

2. Analysis techniques 

In this section we describe some of the techniques that are utilized for processing and analyzing a set of 
data in an efficiently way. 

2.1. Pattern recognition 

Pattern recognition (PR) is an analysis tool which allows classifying different objects according to their 
relevant features. In [10], PR process is described in detail. To understand how PR works, it is needed to 
describe some important concepts 

 Pattern. It is a physical representation of a given object, case or sample. 

 Features. It is a set of data or attributes, obtained from measurements of patterns. These features are 

useful for their further characterization. 

 Feature selection. It is a process to determine which set of features is the most appropriate to describe a 

set of patterns according to their relevance. Feature selection has as the main goal to improve pattern 

speed processing and their accurate classification.  

 Feature extraction. To reduce the amount of redundant data given in a set of features, such set should be 

transformed to obtain its reduced characteristic representation. It is also known as feature vector. 

 Feature vector. It is the reduced characteristic representation of a given set of features. It stores the 

relevant data of such features and it is helpful for its further classification. For its easy management, 

these relevant data are represented in a vector form as shown in (1) 

1 2
, , ...,

d

dr r r Rr , (1) 

where r is the feature vector and R is the domain of dimension d . 

 Feature space. It is a given space where each pattern is a point in the space.  Each feature vector is 

represented as a coordinate on such space. Thus, each axis represents each feature and the dimension d 

should be equal to the number of used features. 

 Class. It is a set of values and attributes associated with concepts, objects and prototypes.  
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Given a pattern, its classification process can be done by using one of the following modes 

 Supervised classification. A given pattern is identified as a member of a given predefined class. 

 Unsupervised classification. A given pattern is assigned to an unknown and undefined class. 

PR main task is to classify patterns in a set of classes, where these classes are defined by a human who 

designs a system (supervised) or are learnt and assigned by using pattern similarity (unsupervised). In this 

work in particular, a statistical PR approach (SPRA) is implemented. By using this approach, each pattern is 

represented by a set of features or measurements in a p-space. An adequate feature selection allows 

establishing disjoint regions. Thus, each class may be distinguished accurately as a different class. Such 

disjoint regions are obtained by using training sets and each disjoint region represents each class. By using 

SPRA, each decision region is determined by the probability density function (pdf) of the patterns belonging 

to each class either in supervised or unsupervised classification [11, 12]. 

2.2. Principal component analysis 

In many cases, a dataset can be shown as a set of points in a p-space. Principal Component Analysis 

(PCA) [13 - 15] is a multivariable method which helps to extract geometric features of such set of points. A 

dataset is described by a set of correlated variables 1 2( , , ..., )px x x . Then, PCA helps to analyze that dataset by 

extracting its relevant information and transforming it as a new set of uncorrelated variables 1 2( , , ..., )py y y . 

Each variable is named as Principal Component. This set of variables is sorted by variance value and 

information that each one possesses. Each jy , 1, 2,...,j p  is a linear combination of 1 2( , , ),... px x x , then 

1 1 2 2 1 1... T
jj j j jy a x a x a x a x , (2) 

where 1 2[ , , ..., ]T
j j j pja a aa  is a row vector of coefficients, 1 2[ , , ..., ]T

px x xx is a column vector of 

variables and T is the transposition operation. 

To achieve the best possible representation, each variance for each coefficient in T
ja should be maximized. 

Thus, 1T
ja  or by using another equivalent representation, 2

1 1T
j j

p
k k jaa a . It means that T

ja  must 

remain orthogonal to maintain its normalized form.  

So, the first principal component is obtained from 1a in such manner that 1y  contains the highest variance 

value under the condition 1 1 1Ta a . The next principal component is obtained from 2a  in such manner that 2y  

should be de-correlated of 1y , and so on. Thus, the set of uncorrelated variables 1 2( , , ..., )py y y  sorted in 

variance-decreasing order is obtained. 

2.3. Entropy 

Entropy is used as a mathematical tool to measure the uncertainty of a dataset. Entropy has been studied 

from the point of view of many disciplines. This concept arisen firstly in physics to study the random 

movement of particles.  Shannon, in his well-known reference [16] proposed the entropy concept as a 
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mathematical tool to measure the uncertainty of a communication source, thus generating the origin of the 

Information Theory. Shannon established that each communication source can be modeled as a source of 

uncertainty, and the uncertainty is described by a pdf. Clearly, some distributions present higher uncertainty 

than others. In the case of a discrete pdf ( )kp x , Shannon’s entropy H of a discrete random variable X is given 

by, 

2

1

( ) ( ) log ( )
M

k k
k

H X p x p x , (3) 

where M is the cardinality of the alphabet X and kx , 1 k M  are the elements of the alphabet.  A property 

of (3) is 20 log ( )( )H X M , given in bits.   

2.4. Entropy space method 

Entropy spaces are built by using traffic data-flows. A generated 3D space under typical traffic is used to 

define a behavior profile of network traffic. This method starts with the definition of a trace , which is 

divided in m non-overlapped traffic slots with maximum time duration of dt  seconds (by using static 

window-time). In a slot i, iK  flows of packets are generated. The flows are defined under a 5-tuple and inter-

flow gap (IFG) of 60 seconds. 

To identify each flow, four fields of each packet were extracted. Each field is labeled as follows: 1r  for 

source IP address (srcIP), 2r  for destination IP (dstIP), 3r  for source port (srcPrt) and 4r  for 

destination port (dstPrt). After that, the set of flows are clustered (clustering) for each slot i. This clustering 

process is done with respect to each r field, now named cluster key. 

For a given i-slot, each cluster is formed by containing flows under the same r  field value, but leaving 

freedom for the rest of r  fields. As an example, for 1r  or cluster key srcIP; each cluster is formed with all 

flows that contains the same source IP address field, regardless of the value at the rest of the fields 2, 3, 4r . 

The rest of the fields are denoted as free-dimensions. It is clear that the complete number of clusters will 

depend of the cardinality of the alphabet 1r
iA , where 1r

iA  is the alphabet of source IP addresses shown in 

slot i. The same clustering process is applied for the rest of r  fields.  

Then, entropy estimation for each cluster key is represented as a 3D Euclidean coordinate, denoted 

as srcPrt dstPrt dstIP
ˆ ˆ ˆ( , , )kH H H . The number of points in the 3D space for each slot i depends of 1r

iA . Thus, the 

current data-points in a slot i are given by srcPrt dstPrt dstIP 1
ˆ ˆ ˆ( , , )H H H , srcPrt dstPrt dstIP 2

ˆ ˆ ˆ( , , )H H H , … 
srcPrt dstPrt dstIPˆ ˆ ˆ( , , )H H H |

1r
iA | . By plotting those points using scatter plot will form a Point Cloud Data. 

Applying the same method for the rest of r  fields and m slots, the four entropy spaces of  are obtained. 
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Fig. 1 shows entropy spaces by using srcIP field for three traffic traces. The traces were obtained from a 

LAN campus, where a network segment was leaved unprotected to the attacks of Blaster and Sasser worms. 

The first figure (1a) shows typical traffic for a trace of 8 hours during the first day of the week, and similar 

patterns were obtained for the rest of the weekdays. The second (1b) and third (1c) figure shows the behavior 

of Blaster and Sasser worms during 30 minutes of traffic capture, respectively. Fig. 1 shows that while typical 

traffic (1a) tends to be concentrated, the behavior of Blaster and Sasser (1b, 1c) tends to spread the points on 

the entropy space. The entropy spaces are represented by using the vector 3pX . PCA is applied to this 

vector to reduce the dimensionality of it and generate a new vector z-score , 3dr dZ . 

3. Kernel density estimation 

To obtain accurate analysis estimation, tools like Kernel Density Estimation (KDE) may be useful. This 
analysis was applied on data-points at the slot level on the PCA 1 by using a Gaussian kernel of 200 points, 
with a bandwidth of 1/51.06h J , the Silverman’s criteria, where J is the number of observations and is 
the standard deviation of the set of  observations. KDE shows that the traffic slots have Gaussian bimodality 
behavior in its pdf. Each mode was labeled as principal mode and far mode respectively, as shown in Fig.2. 

 
Fig. 2 Density estimation of PCA 1 presents bimodal behavior on an i traffic slot. 

 

                                               
 

Fig.1. Entropy spaces for srcIP.  (a) Typical traffic; (b) Blaster worm propagation; (c) Sasser worm propagation 



103 Pablo Velarde-Alvarado et al.  /  Procedia Technology   3  ( 2012 )  97 – 108 

For PCA 1, the empirical obtained media values were among 4.3 (positive far mode) and 4.2  (negative 

far mode) units of PCA 1. Negative far mode was the most frequent. In the case of studied attacks, far mode 

presented anomalous values on slots with anomalous traffic. For instance, in the case of Blaster worm the 

three first slots showed values of 9 , 11  and 13  PCA 1 units. These values were classified as an anomaly 

because of each value is lower than the media and the threshold value ( 4.2 ). Thus, this anomalous behavior 

can be detected easily in an early stage. 

A second feature that was used because of its sensitive behavior is the standard deviation of principal 

mode. The empirical obtained standard deviation in typical conditions was 1.5 units. Then, standard deviation 

of principal mode was taken to show anomalous behavior. For instance, in the case of Sasser worm, the 

standard deviation of principal mode on anomalous slots decreased to 0.4 units in average. In another tests but 

detecting a port-scanning attack, the standard deviation shows 0.7 and 0.4 units on two anomalous traffic 

slots.  

Nevertheless, KDE only provides the density distribution shape but not its parameters. Therefore, a 

technique to extract these parameters (media of the far mode and standard deviation of principal mode) is 

needed. It is important because these parameters can be utilized in an A-NIDS. In the next subsection, an 

auxiliary technique will be described and utilized to obtain these parameters. 

4. Gaussian Mixture Model 

As it was described in the aforementioned subsection, an extra technique should be utilized to extract KDE 

parameters. To achieve this goal, Gaussian Mixture Model (GMM) is used [17]. A GMM implementation can 

be found in Statistic Toolbox of MATLAB. gmdistribution.fit toolbox forms groups of data and then fit them 

on a GMM model of K  components. The fitting process is based on Expectation-Maximization (EM) 

algorithm, which is based on maximum likelihood. The algorithm returns the parameters 1[ ], ,k kk k k
K , 

where 3K  is the number of modes of the estimated pdf  under KDE for PCA 1; k  are the proportions of 

the mixture and k , k  are the media and standard deviation that are related to the required information about 

principal and far modes. 

By using PCA 1 and srcIP key, we obtain the mixture vector k . From k , principal and far modes can be 

identified on an i slot. Principal mode corresponds to k mixture, which has ( )kmax  (maximum proportion). 

Far mode corresponds to mixture with (| |)kmax  (maximum media).  

For classification tasks, feature selection chooses far mode media parameter 1r , and the standard deviation 

of principal mode 2r . The behavior of the aforementioned features allows establishing that they are good 

parameters to identify anomalous and typical traffic. Experiments described throughout this document support 

the aforementioned assumption. 

In Fig. 3, typical traffic analysis shows that the behavior of feature 1r  is tri-modal shape, so the GMM 

description is based on three components.  
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As we describe above, for each feature there are 3D free-dimensions that describe the behavior of the 

network traffic. By using these three free dimensions, a model based on GMM can be constructed.  In the case 

of feature
1
r , the profile behavior model obtained is  

3 3
2

1 1
1 1

2
1

22( ; ) | ,
2

k
GM k k k k

k k k

k

k

r

f r r eN , (4) 

where k  y k  is the media and standard deviation of k-esim component, respectively; and k  are the 

mixture proportions. The three components form a 3-component vector 3
1[ ], ,k k k k k . 2

1 | ,k krN  

represents a Gaussian multivariate distribution. The fit values of this mixture are shown in Table 1. 

Table 1.  k parameter values 

Parameter 1k  2k  3k  

Mixing ( K ) 0.3946 0.5740 0.0314 

Mean ( k ) 4.3239 4.1988  0.0980 

Variance ( 2

k ) 1.6378 1.3208 0.7546 

In the case of feature 2r , analysis on the set of typical traffic traces showed that their behavior followed a 

Generalized extreme value distribution, (GEV), with the following profile behavior model  

2 2

2

1 1 1
1

; , , 1 1*exp
r r

f r , (5) 

for 21 0x , where  is the localization parameter, 0  is the scale parameter and 
is the shape parameter. 

Fitting parameters for (5) which describe the behavior of 2r  are 0.2228 , 0.1221 and 0.9079 . 
The obtained shape with these values is shown in Fig. 4. 

 

Fig.3. Fitting 
1
r feature by using GMM. 
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Fig.  4.  Fitting curve of feature 
2

r  by using a GEV distribution 

5. Framework architecture 

In Fig. 5 an anomaly-based NIDS framework architecture is shown. This framework implements behavior 

profiles based on entropy spaces. It can be divided in two layers. The first one does training functions with the 

selected features ( 1r  and 2r ). In this layer a behavior profile model is obtained by using probabilistic models 

(eq. 4 and 5). The second one performs detection functions by using the feature values that belongs to each 

window of traffic under analysis. Then, each window of traffic is compared with typical traffic profile to 

determine whether an anomaly appears. Each block which forms the framework is described as follows in the 

case of pre-training layer 

 Pre-processing: In this stage each typical traffic trace is sanitized. Such process is done to delete 

duplicated or mis-captured packets. The trace is filtered according to the protocol.  

 Flow generator: On each traffic slot a flow is generated according to 5-tuple definition. 

 Flow clustering. The generated flows are clustered according to a feature. The number of clusters will 

depend of the cardinality of the alphabets for each r feature. 

 Entropy quantification: For each free dimension obtained on each r feature, entropy value is estimated 

by using naïve entropy estimation.  

 Dimension reduction: The set of entropy data-points is transformed by using PCA. From the output of 

PCA, PCA 1 is chosen for srcIP key. By using this key the features are chosen.  

 Feature identification: This stage identifies and obtains the features on each PCA 1 by using GMM. It 

will help to create a profile. 

In the case of the detection layer the process is almost the same, with the only difference that a profile is 

not generated. Instead of this, from each captured traffic slot and after passing the aforementioned listed 

stages, the PCA 1 features are extracted by using GMM and after these features are compared against typical 

traffic behavior according to a probabilistic model (as described in the last section). 



106   Pablo Velarde-Alvarado et al.  /  Procedia Technology   3  ( 2012 )  97 – 108 

 
 
Fig.  5.  Diagram framework for each A-NIDS module 

As it was shown throughout this document, an anomalous behavior changes the traffic behavior and it can 

be measured and compared. Thus, the framework, seen as NIDS, can be able to warn about anomalous 

activities by measuring and comparing deviations against typical values. It is done on each slot of the trace 

and its prevention depends on the window time size. 

Entropy space is formed by data-points, obtained from each traffic feature on each slot. For instance in the 

case of srcIP feature, the data-points represent the multiple entropy values taken for the rest of the dimensions 

for the flow clusters. The number of data-points is defined by the number of different srcIP that are in the slot.  

The first PCA simplifies the analysis of the given dimensions. Two features on the first component can show 

clearly when an anomalous behavior arises.  

Fig. 6a shows the two types of traffic, normal and anomalous traffic produced by Blaster. The former is 

grouped in three different regions and the latter only in two. It can help to apply supervised classification 

techniques by dividing their corresponding classes. In Fig. 6b traffic distribution is shown for the feature 1r on 

both cases normal and anomalous traffic produced by Blaster worm.  
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Fig. 6. (a) Feature space for normal traffic and Blaster. (b) 1r  feature distribution for normal traffic and Blaster. 

In the case of Sasser worm, traffic slots are grouped in one region as shown in Fig 7a. In Fig. 7b it is 

shown the difference between normal traffic and anomalous traffic produced by Sasser worm in the case of 

the feature 2r . For all the aforementioned cases, the regions generated for each type of traffic can be clearly 

divided. 

   
Fig.7. (a) Feature space for normal traffic and Sasser; (b) 2r  feature distribution for normal traffic and Sasser 

6. Conclusions 

In this work we presented an A-NIDS working on flow-packet level. Techniques such as Entropy Spaces, 
Pattern Recognition and fitting models were used.  Their use allows identifying special features that helps to 
define anomalous traffic in specific slots and comparing them with normal traffic. Anomalous traffic presents 
different values than normal traffic in specific parameters in the case of fitting models given by the Gaussian 
Mixture Model. Mean and variance shows different values when anomalous traffic arises, defining different 
regions according to the results shown in Figs. 6 and 7. By using these results, framework architecture is 
proposed to analyze network traffic anomalies. Deviations from a given reference obtained from typical 
traffic are considered anomalous. The further work contemplates to consider scenarios with high volume of 
traffic, the evaluation of more attacks and adding a pre-processing stage by using an S-NIDS like Snort. The 
last issue implies to filter well-known attacks to obtain features that represent normal traffic in a better way. 
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