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Chapter 10

Wavelet q-Fisher 
Information for Scale-
Invariant Network Traffic

Julio Ramírez-Pacheco, Deni Torres-Román, 
Homero Toral-Cruz, and Pablo Velarde-Alvarado

10.1 Introduction
!e study of the properties of computer network traffic is important for many aspects of computer 
network design, performance evaluation, network simulation, capacity planning, and network 
algorithmic design, among others. In the very beginning of computer network traffic modeling, 
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266 ◾ Building Next-Generation Converged Networks

the traffic itself was considered Markovian because older telephone network traffic was suitably 
described by this model; thus, it was unsurprising to consider the characteristics of network traffic 
similar to those of the telephone network. Markovian models permitted straightforward computa-
tions of performance issues due to its being short-range dependent (SRD); moreover, because of 
the ease of computation and lack of memory, they became very popular. !e modeling of com-
puter network traffic with Markovian models ended when Leland et al. [1], based on detailed stud-
ies of high-resolution network measurements, discovered that network traffic did not follow the 
Markovian model but instead is more appropriately modeled by self-similar or fractal stochastic 
processes. Subsequent studies not only validated this finding but also found self-similar features 
in additional network configurations [2,3]. !e self-similar nature of network traffic indicated 
that computer network traffic behaves “statistically” similar at different scales of observation. In 
fact, persistence behavior was observed in local area network traffic at small as well as high levels 
of observation. !is finding was contrary to commonly observed features of Markovian mod-
els where, for large scale, the traffic appeared to reduce to white noise. !e self-similar nature 
of network traffic implied that numerous results based on the Markovian model needed to be 
thoroughly revised. Later, many authors reported that, when considering traffic as a self-similar 
process, many Internet quality of service (QoS) metrics such as delay, packet-loss rate, and jitter 
increased. Because of this, it was obvious that a characterization of the traffic flowing through 
a network was necessary; based on the observed characteristics, actions specifically designed to 
maintain the QoS of the network under acceptable levels were required. !e characterization of 
traffic was in principle performed by estimating the parameters that determine its behavior. !e 
Hurst parameter (or the self-similarity parameter) provided a complete characterization of self-
similar processes; however, due to the complex characteristics of observed traffic, nowadays, it is 
clear that complementary techniques are required [4–6]. Self-similar processes are related to long-
memory, fractal, and multifractal processes, and it is common to find in the scientific literature 
claims that traffic is self-similar, fractal, or multifractal. Self-similar processes along with long-
memory, fractal, 1/f, and multifractal processes belong to the class of scaling or scale-invariant sig-
nals. !e theory of scaling signals has been relevant for the study of many phenomena occurring 
in diverse fields of science and technology. Some aspects of physiology such as heart rate variability 
[7] are suitably modeled by scaling signals, and the parameter of scaling signals determines much 
of the properties of the heart and the individual under study [7]. Electroencephalogram (EEG) 
signals obtained in humans and animals are also appropriately described by scaling signals [8], but 
they also model the traffic flowing through computer communications [2,9,10], the turbulence in 
physics, the noise observed in electronic devices [11], and the time series obtained in economy [3] 
and finance, among others. Many techniques and methodologies have been proposed to analyze 
these processes [12–14]; however, they have shown to be limited for the rich set of complexities 
observed in the data [5,15]. In addition, many articles have concluded that no single technique of 
analysis is sufficient for providing efficient and robust estimation of the scaling parameter [12]. 
Because of this, current works concentrate in developing cutting-edge techniques that are robust 
to trends, level-shifts, and missing values embedded in the data under study. !e presence of these 
phenomenologies significantly impacts the estimation process and can lead to misinterpretation 
of the phenomena [7,12]. In this context, recent results that attempt to study the complexities of 
the underlying process using wavelet-based entropies provide interesting alternatives. In fact, it has 
been demonstrated, for example, that wavelet Tsallis q-entropies behave as a sum-cosh window [6] 
and that this behavior can be used to detect multiple mean level shifts embedded in the scaling 
signal under study and for the classification of scaling signals as stationary or nonstationary as well 
[15]. !is chapter presents novel techniques based on wavelet information tools for the important 
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Wavelet q-Fisher Information for Scale-Invariant Network Traffic ◾ 267

problem of detecting level shifts embedded in scaling signals. !is problem has been recognized 
as of sufficient importance because it impacts the estimation of the scaling parameter α [16,17]. 
!e chapter therefore defines the concept of wavelet q-Fisher information and provides a thorough 
study of its properties for scaling signal analysis. Information planes that attempt to describe the 
complexities of scaling signals are constructed for these processes. In fact, this chapter shows that 
wavelet q-Fisher information provides plausible explanations of the complexities associated to scal-
ing signals; based on this, level-shift detection capabilities can be attached to it. Extensive experi-
mental studies validate the theoretical findings and allow one to study the effect of the parameter q 
on wavelet Fisher’s information’s behavior and the level-shift detection capabilities within scaling 
signals. !e parameter q allows further flexibility and can be adapted to the characteristics of the 
data under study. In the limit of q → 1, it reduces to the standard wavelet Fisher information as 
defined in the work of Ramírez-Pacheco et al. [18].

!e rest of the chapter is organized as follows: In Section 10.2, the properties and definitions of 
scaling signals are studied with sufficient detail, and their wavelet analysis is explored. Also, some 
important results are reviewed for fractional Brownian motion (fBm), fractional Gaussian noise 
(fGn), and discrete pure power-law (PPL) signals. Section 10.3 derives the wavelet q-Fisher infor-
mation for scaling signals and studies its properties. In this section, generalizations of the wavelet 
q-Fisher information are presented in terms of the q-analysis. Section 10.4 details the level-shift 
detection problem and presents some results in which the wavelet q-Fisher information is applied 
for this problem. Section 10.6 draws the conclusions of the chapter.

10.2 Wavelet Analysis of Scaling Processes
10.2.1 Scaling Processes
Scaling processes of parameter α, also called 1/f  α or power-law processes, have been extensively 
applied and studied in the scientific literature because they model diverse phenomena [9,10] within 
these fields. !ese processes are sufficiently characterized by the parameter α, called the scaling 
index, which determines many of their properties. Various definitions have been proposed in the 
scientific literature; some are based on their characteristics such as self-similarity or long memory, 
and others are based on the behavior of their power spectral density (PSD). In this section, a scal-
ing process is a random process for which the associated PSD behaves as a power-law in a range of 
frequencies [2,19], that is,

 S( f ) ~ cf |f |−∝, f ∈ ( fa, fb) (10.1)

where cf is a constant, α ∈ R is the scaling index, and fa, fb represent the lower and upper bound 
frequencies on which the power-law scaling holds. Depending on fa, fb and α, several particular scal-
ing processes and behaviors can be identified. Independently of α, local regularity and band-pass 
power-law behavior is observed whenever fa → ∞ and fa > fb ≫ 0, respectively. When the scaling 
index α is taken into consideration, long-memory behavior is observed when both 0 < α < 1 and fa > 
fb → 0. Self-similar features (in terms of distributional invariance under dilations) are observed in all 
the scaling index range for all f. Scaling index α determines not only the stationary and nonstation-
ary conditions of the scaling process but also the smoothness of their sample path realizations. !e 
greater the scaling index α, the smoother their sample paths. In fact, as long as α ∈ (–1,1), the scaling 
process is stationary [or stationary with long memory for small f and α ∈ (0,1)] and nonstationary 
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268 ◾ Building Next-Generation Converged Networks

when α ∈ (1,3). Some transformations can make a stationary process appear nonstationary and vice 
versa. Outside the range α ∈ (–1,3), several other processes can be identified; for example, the so-
called extended fBm and fGn defined in the work of Serinaldi [12] provide generalizations to the 
standard fBm and fGn signals. !e persistence of scaling processes can also be quantified by the 
index α, and within this framework, scaling processes possess negative persistence as long as α < 0, 
positive weak long persistence when 0 < α < 1, and positive strong long persistence whenever α > 1. 
Scaling signals encompass a large family of well-known random signals, such as fBm and fGn [20], 
PPL processes [19], and multifractal processes [2]. fBm, BH (t), comprises a family of Gaussian, self-
similar processes with stationary increments; because of the Gaussianity, it is completely character-
ized by its autocovariance sequence (ACVS), which is given by

 EB B Rt s t s t sH H BH
H H H

( ) ( ) = = + −{ }−σ2 2 2 2

2
,  (10.2)

where 0 < H < 1 is the Hurst index. fBm is nonstationary, and as such, no spectrum can be defined 
on it; however, fBm possesses an average spectrum of the form SfBm( f ) ~ c|f |−(2H+1) as f → 0, which 
implies that α = 2H + 1 [21]. fBm has been applied very often in the literature; however, it is its 
related process, fGn, that has gained widespread prominence because of the stationarity of its 
realizations. fGn, GH,δ(t), obtained by sampling an fBm process and computing increments of the 
form GH,δ(t) = 1/δ {BH(t + δ)−BH(t), δ ∈ Z+} (i.e., by differentiating fBm), is a well-known Gaussian 
process. !e ACVS of this process is given by

 EG Gt tH H
H H H

, ,( ) ( )δ δ τ σ τ δ τ δ τ+ = + + − −{ }2 2 2 2

2
2  (10.3)

where H ∈ (0,1) is the Hurst index. !e associated PSD of fGn is given by [19]

 S C
f j

ff fX H H
j

fGn sin ,( ) ( )=
+

≤+
=−

∑4 1 1
2

2 2
2 1σ π

∞

∞

 (10.4)

where σx  is the process variance and CH is a constant. fGn is stationary and, for large enough τ 
and under the restriction of 1/2 < H < 1 possesses long-memory or long-range dependence (LRD). 
!e scaling index α associated to fGn signals is given by α = 2H – 1 as its PSD, given by Equation 
10.4, behaves asymptotically as SfGn( f ) ~ c|f |−(2H+1) for f → 0. Another scaling process of interest is 
the family of discrete PPL processes, which are defined as processes for which their PSD behaves as 
Sx( f ) = Cs |f |−α for | f | ≤ 1, where α ∈R and Cs represents a constant. PPL signals are stationary 
when the power-law parameter α < 1 and nonstationary whenever α > 1. As stated in the work of 
Percival [19], the characteristics of these processes and those of fBm/fGn are similar; however, the 
differences between fBm and PPLs with α > 1 are more evident. In fact, differentiation of station-
arity/nonstationarity is far more difficult for PPL than for fBm/fGn. Figure 10.1 displays some 
realizations of fGn, fBm, and PPL processes. !e scaling index α of the PPL signals are identical 
to the scaling index of the associated fGn and fBm. Note that the characteristics of the sample 
paths of fGn are fairly different from those of fBm. In the case of PPL processes, this differentia-
tion is not so evident; in fact, when the scaling indexes approach the boundary α = 1, classification 
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becomes complex. For further information on the properties, estimators, and analysis techniques 
of scaling processes, please refer to references [2,9,10,12,13,19,22].

10.2.2 Wavelet Analysis of Scaling Signals
Wavelets and wavelet transforms have been applied for the analysis of deterministic and random 
signals in almost every field of science [5,23,24]. !e advantages of wavelet analysis over standard 
techniques of signal analysis have been widely reported, and its potential for nonstationary signal 
analysis is proven. Wavelet analysis represents a signal Xt in the time-scale domain by the use of 
an analyzing or mother wavelet, ψo(t) [25]. For our purposes, ψo(t) ∈ L1 ∩ L2 and the family of 
shifted and dilated ψo(t) form an orthonormal basis of L2(R). In addition, the finiteness of the 

mean average energy E X u u( )
2

d < ∞



∫  on the scaling process allows one to represent it as a 

linear combination of the form

 X d j k tt x j k
kj

L

=
=−=

∑∑ ( , ) ( ),ψ
∞

∞

,
1

 (10.5)

where dx ( j, k) represents the discrete wavelet transform (DWT) of Xt, and 
ψ ψj k

j
o

jt t k j k,
/( ) , ,= −( ) ∈{ }− −2 22 Z  is a family of dilated (of order j) and shifted (of order k) 

versions of ψo(t). !e coefficients dx ( j, k) in Equation 10.5, obtained by DWT, represent a random 
process for every j and a random variable for fixed j and k, and as such, many statistical analyses 
can be performed on them. Equation 10.5 represents signal Xt as a linear combination of L detail 
signals, obtained by means of the DWT. DWT is related to the theory of multiresolution signal 
representation, in which signals (or processes) can be represented at different resolutions based 
on the number of detail signals added to the low-frequency approximation signal. Detail random 
signals (dx ( j, k)) are obtained by projections of signal Xt into wavelet spaces Wj, and approximation 
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Figure 10.1 Sample path realizations of some scaling processes. (Top left) fGn with α = –0.1; 
(top right) PPL process with α = –0.1; (bottom left) fBm signal with α = 1.9; (bottom right) PPL 
process with α = 1.9.
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270 ◾ Building Next-Generation Converged Networks

coefficients (ax ( j, k)) are obtained by projections of Xt into related approximation spaces Vj. In the 
study of scaling processes, wavelet analysis has been primarily applied in the estimation of the 
wavelet variance [4,5]. Wavelet variance or spectrum of a random process accounts for computing 
variances of wavelet coefficients at each scale. Wavelet variance not only has permitted to propose 
estimation procedures for the scaling index α but also to compute entropies associated to the 
scaling signals. Wavelet spectrum has also been used for detecting nonstationarities embedded in 
Internet traffic [5]. For stationary zero-mean processes, wavelet spectrum is given by

 Ed j k S f f fX X
j2 2

2( , ) = ( ) ( )−

−∞

∞

∫ ψ d ,  (10.6)

where ψ( f ) = ψ(t)e−j2πft dt is the Fourier integral of ψo(t) and SX(.) represents the PSD of Xt. Table 
10.1 summarizes the wavelet spectrum for some standard scaling processes. For further details on 
the analysis, estimation, and synthesis of scaling processes, please refer to the works of Abry and 
Veitch [25] and Bardet [26] and references therein.

10.3 Wavelet q-Fisher Information of 1/f α Signals
10.3.1 Time-Domain Fisher’s Information Measure
Fisher’s information measure (FIM) has recently been applied in the analysis and processing of 
complex signals [27–29]. In the work of Martin et al. [27], FIM was applied to detect epileptic 
seizures in EEG signals recorded in human and turtles; later, Martin et al. [28] reported that FIM 
can be used to detect dynamical changes in many nonlinear models such as the logistic map and 
Lorenz model, among others. !e work of Telesca et al. [29] reported on the application of FIM 
for the analysis of geoelectrical signals. Recently, Fisher information has been extensively applied 
in quantum mechanical systems for the study of single particle systems [30] and also in the con-
text of atomic and molecular systems [31]. FIM has also been used in combination with Shannon 
entropy power to construct the so-called Fisher–Shannon information plane/product (FSIP) [32]. 
!e FSIP was recognized in that work to be a plausible method for nonstationary signal analysis. 
Let Xt be a signal with associated probability density f X(x) . Fisher’s information (in time domain) 
of signal Xt is defined as

Table 10.1 Wavelet Spectrum or Wavelet Variance Associated to Different 
Types of Scaling Processes

Type of Scaling Process Associated Wavelet Spectrum or Variance

Long-memory process Ed j k C C c f f fX
j2 2

2( , )~ ( , ) ( , ) ( )α
γ

α
ψ α ψ α, d=

−∫ Ψ

Self-similar process E Ed j k d kX
j H

X
2 2 1 22 0( , ) ( , )( )= +

Hsssi process Var ard j k V dX
j H

X
2 2 12 0 0( , ) ( , )( )= +

Discrete PPL process Ed j k CX
j2 2( , ) =

α

Note: E(.), Var(.), and ψ(.) represent expectation, variance, and Fourier integral 
operators, respectively.
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 I f x x
f xX

x
X

X
= ∂

∂




∫ ( )

( )

2
d .  (10.7)

Fisher’s information IX is a nonnegative quantity that yields large (possibly infinite) values for 
smooth signals and small values for random disordered data. Accordingly, Fisher’s information is 
large for narrow probability densities and small for wide (flat) ones [33]. Fisher information is also 
a measure of the oscillatory degree of a waveform; highly oscillatory functions have large Fisher 
information [30]. Fisher’s information has mostly been applied in the context of stationary signals 
using a discretized version of Equation 10.7:
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for some probability mass function (pmf) pk k
L{ } =0. Equation 10.8 can be computed in sliding win-

dows resembling a real-time computation. In this case, Fisher’s information is often called FIM. 
Generalizations of Fisher’s information have been defined in the literature. In fact, Plastino et al. 
[8] defined the q-Fisher information of a pmf as

 I .q j j j
q

j

p p p= −{ }+
−∑ 1

2 2  (10.9)

!e parameter q provides further analysis flexibility and can highlight nonstationarities 
embedded in the signal under study. In this context, q-Fisher information is again a descriptor of 
the complexities associated to random signals and can attain high values.

10.3.2 Wavelet q-Fisher Information
!is section defines a generalized version of Fisher information in the wavelet domain, derives 
a closed-form expression for this quantifier, and explores the possibility of using wavelet Fisher 
information for the analysis of scaling signals. Let X tt , ∈{ }R  be a real-valued scaling process 
satisfying Equation 10.1, with DWT {dx( j, k), ( j, k) ∈ Z2} and associated wavelet spectrum 
E d j k cX X

j
t

( , )
2

2� α (cXt
 is a constant and E is the expectation operator) [5]. A pmf obtained 

from the wavelet spectrum of scaling signals is given by the expression [6]
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where Nj (Ni) represents the number of wavelet coefficients at scale j (i), M = log2(N) with N ∈ +Z  
the length of the data, and j = 1,2,… M. Substituting Equation 10.10 into Equation 10.9 results 
in the wavelet q-Fisher information of a scaling signal, which is given by
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where Pnum and Pden are given by the following polynomial expressions:
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with u1 = αqlnq (2)/2, u2 = qu1, v1 = 2 (1 − q)/(αq), and v2 = qv1. Equations 10.12 through 10.18 involve 
the use of the q-analysis [34], where sinhq q

x
q

xx e e q( ) /≡ −{ }� 2 and coshq q
x

q
xx e e q( ) /≡ +{ }� 2 denote 

the q-sinh and q-cosh functions, respectively. e q xq
x q

≡ + −{ } −
1 1

1 1
( )

( )
 and �q x x q x≡ − + −{ }( )/ ( )1 1  

denote the q-exponential and q-difference functions, respectively. Equation 10.12 allows one to 
relate the results of wavelet q-Fisher information with the ones of the standard wavelet FIM. In 
fact, in the q → 1 limiting case, wavelet q-Fisher information turns out to be the standard wavelet 
Fisher information for which the following holds:
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where PM
num(.) and PM

den
+1(.) denote polynomials of argument 2cosh(α ln 2/2) that are given by
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where u = α ln 2/2. An interesting question is how the behavior of wavelet q-Fisher information 
is affected by q. To answer this question, Figure 10.2 displays the wavelet q-Fisher information 
for q ∈ (0,1). Note that, as q approaches 1, wavelet q-Fisher information attains higher values for 
nonstationary signals (α > 1). !erefore, if the signal is smooth or has a narrow probability density, 
then it is more likely to have a large wavelet q-Fisher value. Note also that, as long as q ∈ (0,1), the 
form of the Fisher information is similar to that of the standard wavelet Fisher information [18] 
(high for highly oscillatory data and low for smooth signals). For the case where q ∈ (0,1), wavelet 
q-Fisher has a behavior that is similar to that of the top left plot of Figure 10.3. In fact, when q = 2, 
wavelet q-Fisher information is symmetric with respect to α = 0. Wavelet q-Fisher information 
reverses its behavior as long as q > 2, that is, in this case, highly oscillatory functions or functions 
with narrow probability densities display low values of their Fisher information, whereas smooth 
and flat probability densities display high values. Unlike the case q > 1, the q > 2 case decreases 
the range of variation of the wavelet q-Fisher information; thus, the detection of nonstationarities 
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Figure 10.2 Wavelet q-Fisher information for 1/fα signals. (Top left) Fisher information with 
q = 0.2; (top right) q = 0.4; (bottom left) Fisher information for q = 0.6; (bottom right) q = 0.8.
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embedded in a signal is more difficult. Based on this behavior of the wavelet q-Fisher information, 
it is clear that values of q ∈ (0,1) are suitable for detecting nonstationarities embedded in the data.

In this case, the value of the q-Fisher information is significantly higher for nonstationary 
signals. Figure 10.4 presents the theoretical wavelet q-Fisher information for scaling signals with 
α ∈ (–4,4) and fixed-length M = 16. According to Figure 10.4, for q < 1, wavelet q-Fisher informa-
tion is high for nonstationary signals (α ≥ 1) and low for stationary ones (α < 1). Fisher information 
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Figure 10.3 Wavelet q-Fisher information for 1/fα signals. (Top left) Fisher information with 
q = 2.5; (top right) q = 3; (bottom left) Fisher information for q = 3.5; (bottom right) q = 4.
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consequently is high for correlated scaling signals and low for anticorrelated ones [18]. Fisher 
information is minimum (Iq = 0) for completely random signals (α = 0).

10.3.3 Applications of Wavelet FIM
Because wavelet q-Fisher information describes properly the characteristics and complexities of 
fractal 1/f  α signals, many applications can be identified using this complexity-based framework. 
In fact, based on the fact that wavelet q-Fisher information achieves large values for nonstation-
ary signals and small values for stationary ones (for the case q ∈ (0,1)), a potential application 
area of wavelet q-Fisher information is in the classification of fractal signals as fractional noises 
and motions. Classification of 1/f  α signals as motions or noises remains as an important, attrac-
tive, and unresolved problem in scaling signal analysis [7,35,36] because the nature of the signal 
governs the selection of estimators, the shape of quantifiers such as qth-order moments, and the 
nature of correlation functions [37]. Another important potential application of wavelet q-Fisher 
information, related to the classification of signals, is in the blind estimation of scaling parameters 
[38]. Blind estimation refers to estimating α independently of signal type (stationary or nonsta-
tionary). Wavelet q-Fisher information can also be utilized for the detection of structural breaks in 
the mean embedded in 1/f  α signals. Structural breaks in the mean affect significantly the estima-
tion of scaling parameters leading to biased estimates of α and consequently in misinterpretation 
of the phenomena. In fact, in the work of Stoev et al. [5], it was demonstrated that the well-known 
Abry–Veitch estimator overestimates the scaling index α in the presence of a single level shift 
leading to values of H = (α + 1)/2 > 1, which, in principle, is not permissible in theory. In the fol-
lowing, the section concentrates on the detection of structural breaks in the mean embedded in 
synthesized stationary fGn signals by the use of wavelet q-Fisher information. !e section studies 
anticorrelated and correlated versions of fGn and the power of wavelet q-Fisher information in 
detecting single structural breaks in the mean in these signals.

10.4 Level-Shift Detection Using Wavelet q-Fisher Information
10.4.1 Problem of Level-Shift Detection
Detection and location of structural breaks in the mean (level shifts) have been recognized as 
an important research problem in many areas of science and engineering [16,17]. In the Internet 
traffic analysis framework, detection, location, and mitigation of level shifts significantly improve 
on the estimation process. In fact, the presence of a single level shift embedded in a stationary 
fGn results in an estimated H > 1 [5]. !is, in turn, results in misinterpretation of the phenomena 
under study and also in inadequate construction of qth-order moments. Let B t t( ), ∈R, be a 1/f 
signal with level shifts at time instants {t1, t1+L,…, ti, ti+L}· B(t) can be represented as

 B t X t tj t t
j

J

j j L
( ) ( ) ( ), ,= +

+ 
=

∑µ 1
1

,  (10.19)

where X(t) is a signal satisfying Equation 10.1 and μj1[a,b](t)  represents the indicator function 
of amplitude μj in the interval [a,b]. !e problem of level-shift detection reduces to identify the 
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points {tj, tj+L}j∈J, where a change in behavior occurs. Often, the change is perceptible by eye, but 
frequently, this is not the case and alternative quantitative methods are preferred. In what follows, 
a description of the procedure for detecting level shifts in 1/f signals by wavelet q-Fisher informa-
tion is described; later, results on simulated fGn signals are presented.

10.4.2 Level-Shift Detection Using Wavelet q-Fisher Information
To detect the presence of level shifts in fractal 1/f signals, wavelet q-Fisher information is com-
puted in sliding windows. A window of length w, located in the interval m∆ ≤ tk < m∆ + w applied 
to signal {X(tk), k = 1,2,… N}, is

 X m w X t t m
wk; ,∆ ∆( ) = ( ) − −



∏ 1

2  (10.20)

where m = 0,1,2,…, mmax, ∆ is the sliding factor, and Π(.) is the well-known rectangular func-
tion. Note that Equation 10.20 represents a subset of X(tk); thus, by varying m from 0 to mmax and 
computing wavelet q-Fisher information on every window, the temporal evolution of wavelet FIM 
is followed. Suppose the wavelet q-Fisher information at time m (for sliding factor ∆) is denoted 
as Ix(m). !en a plot of the points

 w m I m Ix m

m
X+( ){ } =

=
∆, max( ) :

0  (10.21)

represents such time evolution. In the work of Stoev et al. [5], it was demonstrated that the pres-
ence of a sudden jump in a stationary fractal signal will cause the estimated Ĥ > 1. !e level shift 
thus causes the signal under observation become nonstationary. In the wavelet q-Fisher informa-
tion framework, this sudden jump will cause its value to increase suddenly [according to its stud-
ied behavior for q ∈ (0,1)]. !erefore, a sudden jump increase in the plot of Equation 10.21 can be 
considered as an indicator of the occurrence of a single level shift in the signal. !ese theoretical 
findings are experimentally tested by the use of synthesized scaling signal with level shifts. !e 
synthesized signals correspond to fGn signals generated using the circular embedding algorithm 
[39,40] (also known as the Davies and Harte algorithm).

10.5 Results and Discussion
Figure 10.5 displays the level-shift detection capabilities of wavelet q-Fisher information for a cor-
related fGn signal with Hurst exponent H = 0.7 and a single structural break located at tb = 8192. 
!e length of the signal is N = 214 points with the break located in the middle and amplitude 

σ X
2

 , where σ X
2  is the fGn variance. !e top plot displays the signal and also the level shift (in 

white) added to its structure for illustration purposes only. It is important to note that the ampli-
tude of the considered and studied level shifts are weak; however, wavelet q-Fisher information 
detects appropriately its location. !e presence of a single level shift embedded in the fGn signal is 
therefore detected by a sudden increase (in the form of an impulse) in the wavelet q-Fisher infor-
mation value when computed in sliding windows.
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In Figure 10.5, wavelet q-Fisher information was computed with q = 0.6. !e Hurst exponent 
H = 0.7 means that the signal under study is stationary with LRD. Figure 10.6 displays the level-
shift detection capabilities of wavelet q-Fisher information when considering anticorrelated fGn 
signals. Anticorrelated signals have the property that high values are likely to be followed by low 
values and vice versa. Note that, for these types of signals, wavelet q-Fisher information effectively 
detects and also locates level shift embedded in the signal structure. !erefore, independently of 
the type of anticorrelated fGn signal (H < 0.5), wavelet q-Fisher information appropriately detects 
weak level shift with amplitudes higher than σ X

2 2/ . !e analysis performed in Figure 10.6 was 
performed in sliding windows of length W = 211 at steps of ∆ = 90.
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!e parameter q of Fisher was set to q = 0.6, and the length of the considered signal was N = 214 
points. Similar results were obtained when increasing q → 1. In fact, by increasing the amplitudes 
of the level shifts, better detection capabilities can be observed in wavelet q-Fisher information; 
however, a higher level shift can also be detected by eye. Figure 10.7 presents the level-shift detec-
tion capabilities of wavelet q-Fisher information for correlated fGn signals with long-memory 
and Gaussian white noise. !e top left plot displays the wavelet q-Fisher information for a totally 
disordered Gaussian white noise signal (H = 0.5). Note that wavelet q-Fisher information effec-
tively detects the level shift within this signal. For correlated signals, wavelet q-Fisher information 
performs well and appropriately detects the presence of the level shifts.

Note, however, that, in some cases, wavelet q-Fisher information values decrease in amplitude 
but are sufficiently high to be considered as level shifts. Based on these results, wavelet q-Fisher 
information therefore detects appropriately level shifts embedded in stationary fGn signals. !e 
detection is accomplished independently of the range of the Hurst parameter and in consequence 
of the correlation structure in the signal. Wavelet q-Fisher information therefore provides an inter-
esting alternative to the problem of level-shift detection in fGn signals.

10.5.1 Application to Variable Bit Rate Video Traces
Variable bit rate (VBR) video is expected to account for a large amount of the traffic flowing 
through next-generation converged networks. !e study of the properties of VBR video traffic 
is therefore important because novel algorithms can be designed to the characteristics observed 
within this traffic. VBR video traffic is long-range dependent and the long-memory parameter is 
in many cases H > 1, which, in theory, is not permissible. !e H > 1 case suggests that the VBR 
video traffic may be subjected to level shifts or nonstationarities embedded within the signal. In 
this context, we apply the wavelet q-Fisher information to a large set of VBR video traces and 
found that many traces display many impulse-shaped peaks in their wavelet q-Fisher information. 
Figure 10.8 displays the wavelet q-Fisher information for an H.263 encoded video signal. Note 
that this VBR video signal presents many impulse-shaped peaks, which indicate the presence of 
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level shifts embedded within the VBR video signal. !is result also explains why wavelet-based 
estimator displays long-memory index estimation of H > 1.

10.6 Conclusions
In this chapter, the notion of wavelet q-Fisher information was introduced. A closed-form expres-
sion for this quantifier was developed for scaling signals, and its properties and behavior, in a range 
of the parameter α and for various q, were studied. It was demonstrated through experimental 
studies with simulated fGn signals that wavelet q-Fisher information not only provides appropriate 
descriptions of the complexities of these signals but also allows one to detect structural breaks in 
the mean embedded in their structure. In fact, wavelet q-Fisher information allows to effectively 
and timely detect structural breaks embedded in anticorrelated and correlated fGn signals.
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