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Abstract: Recent studies have shown that handcrafted glass-clay containers are a health 

risk because they can be contaminated by heavy metals, which can be transferred to food, 

thus reaching the human body to potentially cause illness. Therefore, in the present work, 

we evaluate the leaching of lead, cadmium, and cobalt from glass-clay containers into two 

types of food: tomato sauce (salsa), and chickpea puree. The containers were obtained from 

four regions in the Mexican state of Hidalgo. Repetitive extractions from the containers 

were carried out to quantify the leaching of the heavy metals into the salsa, the chickpea 

puree, and acetic acid using the technique proposed by the USFDA. The results show that 

greater use of the containers leads to more leaching of heavy metals into both types of food 

and into the acetic acid, with the greatest metal extraction recorded for the Ixmiquilpan 

vessels. These results indicate that the metals present in the glass-clay containers leach into 
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the food and that increased reuse increases the risk to the people who use them in  

food preparation. 

Keywords: leaching; heavy metals; glass clay 

 

1. Introduction 

The development of technology, large-scale and indiscriminate consumption of fuel, and industrial 

chemical waste have caused the presence of considerable metal concentrations in the environment, 

which can exert several different effects on the ecosystem [1,2]. However, the incidence of metals in 

nature ranges beyond domestic and industrial processes to natural deposits that are found in the Earth’s 

crust and to a natural presence in the air, water, and soil [3,4]. Regardless of the source of the metals 

found in the environment, many of them play an important role in all life forms. For example, cobalt, 

iron, chrome, zinc, and manganese are essential to plants and animals. However, elements such as lead, 

cadmium, arsenic, beryllium, mercury, and barium have not shown any beneficial function in human 

beings [5,6]. 

Although the toxicity of a metal depends on the amount ingested, chronic exposure to certain 

metals, such as arsenic and lead, can cause severe toxic effects, even in low amounts. Humans are 

exposed to metals through different exposure pathways, the most common being inhalation of 

contaminated air and ingestion of products such as water, medicinal herbs, and food [7–10]. 

Lead is considered to be among the most dangerous metals for human health because it affects the 

central nervous system, causes anemia and gastrointestinal damage, and is associated with alterations 

in genetic expression [11–15]. Cadmium is even more dangerous, being 10 times more toxic than lead, 

and is an element to which humans are readily exposed due to its large industrial use. This metal has 

been associated with problems in respiratory pathways, including lung cancer [16–18], problems in the 

gastrointestinal system [19,20], and, although it has shown a very small mutagenic effect, it has been 

linked with genotoxic effects in some eukaryotic cells, such as in the testicles [21], and with inhibited 

DNA repair [22,23]. Cobalt is an element that is not easily found in free form in the environment, but 

is known for being introduced into the food chain due to its absorption by plants in the forms of 

fertilizers and industrial pollutants [24–26]. Exposure to cobalt can cause damage to respiratory 

pathways and to the lungs, heart, and thyroid [27–29]. 

The presence of metals in food can be caused by different sources, such as by direct contamination 

during production, from metal-rich soil, air, or contaminated water, or from the use of pesticides or 

fertilizers. Food can also be contaminated during transport, industrial processing, or during storage [30–32]. 

The domestic preparation of food as a potential source of heavy-metal contamination has been 

afforded little importance. However, there are reports that indicate that certain kitchen utensils used for 

food preparation can represent a significant risk because they are manufactured with materials that can 

be hazardous or contaminated by toxic metals [33–35]. 

In Mexico and in some other countries, different glass-clay containers are handcrafted and used for 

the preparation, storage, and consumption of food. By their very nature, these containers can be 

contaminated with heavy metals, which can derive from the raw materials used in their manufacturing, 
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such as clay, water, and enamel [33,36]. The problem with the presence of heavy metals in glass-clay 

containers lies in the fact that these contaminants can be transferred to food by a leaching process, 

which is directly related with the physical and chemical conditions of the food, such as temperature 

and pH [37,38]. 

Therefore, sequential leaching of cadmium, cobalt, and lead into food stored in glass-clay vessels 

from four municipalities of the state of Hidalgo in Mexico is evaluated in the present work. 

2. Experimental Section 

2.1. Samples 

The clay, the enamel litargirio (termed greta by the manufacturers), and 12 glass-clay containers 

were obtained directly from a sole manufacturer in each locality of the four regions of the state of 

Hidalgo: Huejutla; Ixmiquilpan; Tepetitlán, and Tulancingo. Samples of the clay and the enamel used 

in the manufacturing of the containers were also collected. 

All containers were washed with detergent and a commercial dish-scrubbing fiber (Scotch Brite), 

simulating everyday use, rinsed with deionized water, and dried in an oven (Scorpion Scientific, Model 

D 1754) at a temperature of 25 °C for 24 h [37]. 

2.2. Preparation of Food 

Two types of food with different pH were prepared. One consisted of a green tomato sauce 

traditionally consumed by the population (salsa) based on husk tomato (Phisalis phyladelphica Lam.), 

serrano pepper (Capsicum frutescens), garlic (Allium sativum), and onion (Allium cepa), with a pH of 

4.2. The second type of food was a chickpea puree (Cicer arietinum) cooked in water, with a pH of 6.0. 

2.3. Leaching of Heavy Metals into Food 

One glass-clay recipient per region was filled with 300 mL of salsa or puree and stored for 24 h at  

4 °C. Subsequently, the food was removed, and a 1 g aliquot of each food type was subjected to 

digestion as described later. The containers were then washed and dried again as previously indicated 

to simulate the wear and tear that they undergo during frequent use. The containers had the respective 

food type placed in them again, and the initial conditions were again performed. The entire procedure 

was repeated a total of 10 times. The test was performed in triplicate for each study area and for each 

food type; for each repetition of the study regions and food, we employed a new glass-clay container. 

2.4. Heavy-Metal Leaching Effect in Glass-Clay Containers with Acetic Acid 

The heavy-metal leaching technique described by the US Food and Drug Administration (FDA) 

was used with some modifications, as described González de Mejía et al. [37]. The leaching of Cd and 

Co was followed according to the method established for Pb by the FDA as follows: a new container 

for each of the four areas studied, previously washed and dried, was filled with 300 mL of acetic acid 

(4% pH 2.75) and heated to 35 °C for 45 h to simulate the wear of the protective enamel and the 

leaching of the studied metals in the vessels due to continuous use and reuse. Every 3 h, a 10 mL 



Int. J. Mol. Sci. 2011, 12           

 

 

2339 

aliquot of acetic acid was taken until a series of 15 samplings in triplicate per area studied was 

completed. A 1 mL aliquot of the acetic acid of each sample was taken and digested. The testing was 

conducted in triplicate for each area, employing a new container on each occasion. 

2.5. Extraction of Metals in Clays and Enamels Used in the Manufacturing of the Containers 

A 1 g aliquot of enamel or clay was taken and digested with dihydrogen peroxide and acetic acid as 

mentioned later, performing the procedure in triplicate. 

2.6. Digesting of Samples 

The samples obtained in the previously mentioned experiments were digested with 1 mL of 

hydrogen peroxide (J.T. Baker, Mexico) and 2.5 mL of concentrated nitric acid (J.T. Baker, Mexico) in 

a Teflon TFM vessel with a Milestone Start D microware digestion system (Multiwave Anton Paar, 

Perkin-Elmer, Austria) with 75 bars of pressure and 500 watts of power at 280 °C for 35 min. Next, the 

sample was filtered with 0.4-micron pore-sized Whatman paper and the samples were stored at  

4 °C [39]. 

2.7. Quantification of Cd, Co, and Pb 

The concentrations of Cd, Co and Pb were determined by inductively coupled plasma spectrometry 

(ICP/O, Perkin-Elmer Optima 3000 XL, Austria). Measurements were performed for each of the 

triplicates of leaching tests and for each region under study. The limits of detection were the following: 

Cd, 0.15 ppb; Co, 3.0 ppb, and Pb, 0.30 ppb. We made a calibration curve using a standard multi-ionic 

containing Cd, Co, and Pb at concentrations of 0, 0.5, 1.5, 3, 5, and 7 ppm. The accuracy of the 

instrumental methods and analytical procedures was checked by performing the measurements in 

triplicate. Analytical-grade reagents (J.T. Baker) were used for the blanks and calibration curves. 

2.8. Data Analysis 

The results were evaluated statistically using the statistical software SPSS 12.0. The two-way 

ANOVA test was applied to study variance. The statistical significance of the differences was assessed 

by applying the Tukey test. A probability of 0.05 or lower (p ≤ 0.05) was considered significant. 

3. Results 

3.1. Quantifying Cd, Co, and Pb in Enamels and Clays Used for the Manufacture of  

Glass-Clay Containers 

Table 1 shows the content of Cd, Co, and Pb present in the enamels utilized in the manufacture of 

glass-clay vessels. No difference was observed in heavy-metal concentration in the four areas studied. 

The highest content of Cd and Pb was found in the Huejutla sample, while the highest content of Co 

was found in the Tulancingo sample. 

The Cd, Co, and Pb concentrations in the clays used to manufacture glass-clay containers are shown 

in Table 2. It can be observed that the concentration of these metals is statistically different in each 
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region studied, with the Ixmiquilpan region having the maximum metal concentrations of 757.99, 

571.39, and 833.73 ppm for Cd, Co, and Pb, respectively, whereas Tulancingo had the  

lowest concentration. 

Table 1. Cd, Co, and Pb content in enamels used for the manufacturing of glass-clay containers. 

Region 

Metal 

Huejutla Ixmiquilpan Tepetitlán Tulancingo 

Concentration (ppm) 

Cd 65.95 ± 5.55 63.32 ± 2.90 64.77 ± 0.37 64.46 ± 0.94 

Co 43.20 ± 0.45 43.24 ± 1.69 43.20 ± 0.45 44.00 ± 1.98 

Pb 64.75 ± 3.05 63.01 ± 3.38 62.60 ± 3.45 63.44 ± 4.20 

Mean values ± standard deviation; p ≤ 0.05; no significant statistical difference was found 

among regions. 

Table 2. Cd, Co, and Pb content in clay used to manufacture glass-clay containers. 

Region 

 

Metal 

Huejutla Ixmiquilpan Tepetitlán Tulancingo 

Concentration (ppm) 

Cd 559.56 ± 3.16
a
 757.99 ± 4.16 685.53 ± 7.60

a
 557.99 ± 4.16

a
 

Co 472.43 ± 2.77
b
 571.39 ± 3.72 562.82 ± 3.84 468.24 ± 6.18

b
 

Pb 621.90 ± 0.52
c
 805.33 ± 1.98 704.40 ± 1.25 607.59 ± 3.48

c
 

Mean values ± standard deviation; p ≤ 0.05. 

Letters indicate significant statistical differences with respect to the region of highest 

concentration of each metal: 
a 
With respect to Cd; 

b 
with respect to Co; 

c 
with respect to Pb. 

 

3.2. Leaching of Cd, Co, and Pb into Green Tomato Sauce (Salsa) at pH 4.2 

Figures 1, 2, and 3 show the Cd, Co, and Pb content due to the leaching of glass-clay containers into 

green tomato sauce (salsa) for the four regions studied after 10 extractions. It can be observed that the 

concentration of metals differs in each region studied, with the vessels from Ixmiquilpan having the 

largest amount of leached Cd, Co, and Pb after 10 extractions. The concentration ranges were 1.33 to 

54.12 ppm for Cd, 2.40 to 27.67 ppm for Co, and 5.30 to 63.33 ppm for Pb. On the other hand, the clay 

containers from the Tulancingo region showed the least amount of leaching of the three metals, in 

which the concentrations ranged from 0.74 to 16.15 ppm for Cd, from 0.78 to 17.34 ppm for Co, and 

1.52 to 28.93 ppm for Pb. 

The statistical analysis shows significant differences for each metal among the municipalities 

studied, with the greatest concentrations of Cd, Co, and Pb found in Ixmiquilpan (54.12, 27.67, and 

63.33 ppm, respectively). 
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Figure 1. Concentration of Cd leached from the glass-clay containers into the green tomato 

sauce (salsa). The bars show the mean values of the four regions studied with their standard 

deviations. 
* 

Indicates significant statistical differences with respect to the Ixmiquilpan 

region, which represents the highest concentration of the metal; p ≤ 0.05. 
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Figure 2. Concentration of Co leached from the glass-clay containers into the green tomato 

sauce (salsa). The bars show the mean values of the four regions studied along with their 

standard deviations. 
* 

Indicates significant statistical differences with respect to the 

Ixmiquilpan region, which represents the highest concentration of the metal; p ≤ 0.05. 
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Figure 3. Concentration of Pb leached from the glass-clay containers into the green tomato 

sauce (salsa). The bars show the mean values of the four regions studied along with their 

standard deviations. 
* 

Indicates significant statistical differences with respect to the 

Ixmiquilpan region, which represents the highest concentration of the metal; p ≤ 0.05. 
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3.3. Leaching of Cd, Co, and Pb in Chickpea Puree at pH 6.5 

Figures 4, 5, and 6 show the Cd, Co, and Pb concentrations caused by the leaching of the glass-clay 

containers into the chickpea puree in the four regions after 10 extractions. The results show significant 

differences among the sampling locations and the analyzed metals, with the Ixmiquilpan vessels 

having the greatest leaching of the three metals. For this region, the Pb levels were the highest  

(1.97–13.40 ppm), followed by Cd (1.65–11.57 ppm) and Co (1.23–7.03 ppm). The Tulancingo vessels 

had the lowest levels, ranging between 1.11 and 8.23 ppm for Pb, between 0.7 and 5.73 ppm for Cd, 

and between 1.39 and 2.48 ppm for Co. 

Figure 4. Concentration of Cd leached from the glass-clay containers into the chickpea 

puree. The bars show the mean values of the four regions with their standard deviations.  
* 

Indicates significant statistical differences with respect to the Ixmiquilpan region, which 

represents the highest concentration of the metal; p ≤ 0.05. 
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Figure 5. Concentration of Co leached from the glass-clay containers into the chickpea puree. 

The bars show the mean values of the four regions along with their standard deviations.  
* 

Indicates significant statistical differences with respect to the Ixmiquilpan region, which 

represents the highest concentration of the metal; p ≤ 0.05. 
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Figure 6. Concentration of Pb leached from the glass-clay containers into the chickpea 

puree. The bars show the mean values of the four regions with their standard deviations.  
* 

Indicates significant statistical differences with respect to the Ixmiquilpan region, which 

represents the highest concentration of the metal; p ≤ 0.05. 
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3.4. Leaching of Cd, Co, and Pb with Acetic Acid at pH 2.75 

The leaching of Cd, Co, and Pb with a series of 15 extractions with acetic acid from the glass-clay 

containers are shown in Figures 7, 8, and 9. It can be observed that the sampling locations show a 

statistical difference in the concentrations of leached metals. The Ixmiquilpan vessels have the greatest 

leached concentrations of the three metals, with levels within the range of 2.24–127.52 ppm for Cd, 

2.4–70.38 ppm for Co, and 4.0–188.08 ppm for Pb. On the other hand, the clay containers from 
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Tulancingo have the lowest metal concentrations: Co (0.39–41.46 ppm); Cd (1.43–74.59 ppm), and  

Pb (2.86–106.52 ppm). 

Figure 7. Concentration of leached Cd from the glass-clay containers into acetic acid. The 

bars show the mean values of the four regions studied, along with their standard deviations. 
* 

Indicates significant statistical differences with respect to the Ixmiquilpan region, which 

represents the highest concentration of the metal; p ≤ 0.05. 
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Figure 8. Concentration of Co leached from the glass-clay containers into acetic acid. The 

bars show the mean values of the four regions with their standard deviations. 
* 

Indicates 

significant statistical differences with respect to the Ixmiquilpan region, which represents 

the highest concentration of the metal; p ≤ 0.05. 
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Figure 9. Concentration of Pb leached from glass-clay containers into acetic acid. The bars 

show the mean values of the four regions studied along with their standard deviations.  
* 

Indicates significant statistical differences with respect to the Ixmiquilpan regions, which 

represents the highest concentration of the metal; p ≤ 0.05. 
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4. Discussion 

The clays used in the manufacturing of glass-clay containers are very diverse. On occasion, a 

mixture of clays from different areas is used to obtain an ideal mixture. Therefore, the metal content in 

the containers depends on the origin of the clays, causing significant variation. These clays have 

silicon oxide as their main component, as well as other complex silicates, and kaolin, alumina, and 

feldspar. Due to their nature, they can also have various amounts of different metals. Unfortunately, 

Mexico does not exert toxicological control over the clays; thus, the final product can have various 

levels of heavy metals. The natural diversity of each clay lot means that its composition varies 

considerably, and the containers made from this clay therefore also vary in composition. 

As was observed in this work, the Cd, Co, and Pb content in the four analyzed clay samples vary 

significantly, which is due to the very diverse composition of their sources. The high metal content 

observed indicates the absence of quality control of this material and makes the need evident for the 

government to exercise preventive measures in this situation by enforcing the quality control of raw 

materials such as clay. 

For the enamel coating of clay vessels, the craftsmen of the studied regions, as well as in many 

other regions, employ a product called litharge or greta. The results indicate that manufacturers are 

probably using greta from the same company, but it is difficult to know what this is, or what the 

brands or companies are that provide this type of material, as it is often acquired through 

intermediaries at low scale.  

This product is made from lead oxide, which has benefits to the manufacturers, including low cost 

and a low melting temperature (<990 °C), rendering it adequate for the manufacturing conditions used 

by craftsmen and provides the vessels with their characteristic shine. Although the official Mexican 

code (NOM-231-SSA1-2002) [40] prohibits the use of this type of product in the coating of containers 
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used to store and/or process food or beverages for human consumption, they continue to be used. Their 

continued use is because people do not know or are ignorant of the law; therefore, materials used for 

the manufacturing of utensils for human use must not contain lead or any of its derivatives due to the 

health problems that they cause. The law also states that the use of lead oxide-based enamels, such as 

litharge, which craftsmen from the studied regions use in the handcraft of clay containers, is not allowed. 

The leaching of metals induced by acetic acid, which was used to simulate the prolonged use of the 

containers, shows that metal leaching increases with increased use of the containers. This method to 

establish the amount of metals that are leached by acetic acid has been well utilized by several  

authors [37,41–44], who have shown that clay containers from Mexico, Italy, and other countries have 

high concentrations of heavy metals, mainly lead, surpassing the limits allowed by the FDA. 

Although the use of enamels based on lead or any of its derivatives is prohibited in many countries, 

such as Mexico, they continue to be used because this type of material is less expensive than their  

lead-free counterparts, without considering the hazards that they can cause to human health. There are 

reports [42,45,46] in which a correlation between the use of glass-clay containers covered with  

lead-based enamel and high blood levels of lead is reported. 

Similar to the results of the present work, other researchers [47,48] have observed that the cadmium 

levels in clay containers can be very high due to the contamination of the raw materials. Both clays and 

enamels demonstrate high concentrations of this metal, which are leached from the container in greater 

concentrations the more the container is used, yielding levels above those permitted by the FDA and 

Mexican law [40]. 

In our results, the Tulancingo region shows a statistically lower concentration of this metal in food 

compared with the other regions. However, there is a toxicological risk when the containers are 

constantly reused because increasing their use degrades the enamel covering the vessel due to acidity 

and to the friction between the food and the vessel walls, which consequently causes a greater 

concentration of heavy metals to leach. None of the containers met the limits allowed by Mexican Law 

for the limits of Cd in glass-clay articles, namely, a permissible maximum of 0.5 ppm. However, the 

US FDA mandates a maximum cadmium concentration in various ceramic articles of 0.25 ppm, which 

is why the results of this work show that the studied samples have higher levels of Cd leaching. 

Although a permissible limit for the levels of cobalt in the recipients of glass clay has not been 

officially mandated, it is known that this metal can be toxic to living organisms [49–52]. Therefore, a 

1.5 ppm maximum permissible limit of this metal has been reported because higher levels can be 

related with health problems. As we can see, the levels of Co leached from containers by the acetic 

acid are higher than the permissible level, beginning with the first extraction and increasing with 

further container use, reaching concentrations of >70 ppm. Co is essential in trace amounts for living 

organisms, mainly in the form of vitamin B12, and is important for the functioning of red blood cells. 

Although it is not easily stored in the body, consumption of high amounts can cause adverse effects in 

lungs, heart, and skin [49–52]. It has also been shown that high amounts of Co can cause severe 

damage to respiratory pathways, such as degeneration and squamous metaplasia of the olfactory 

epithelium [29]. Thus, care must be taken with the different exposure pathways for humans because Co 

levels can increase to levels that pose health risks. 



Int. J. Mol. Sci. 2011, 12           

 

 

2347 

Despite the fact that the lowest levels of leached cadmium and lead were found in Tulancingo, these 

levels remain higher than those reported by Gould et al., in 1983 [41]. However, there are works in 

which even greater leaching of both metals have been reported [37,42–44]. 

Similar to the manner in which leaching of metals was observed with acetic acid, release of metals 

into food was also observed when using two types of food, with pH values of 4.2 and 6.0, with the 

greater leaching noted with green tomato sauce (salsa), at a pH of 4.2. The effect increased when the 

clay containers were reused, which agrees with results observed with acetic acid. The results found 

during the clay vessel re-usage experiments for the leaching of Pb and Cd show that the concentration of 

heavy metals leached by the clay containers in this study is greater than those reported by Gould et al. in 

1983 [41] and by González de Mejía et al. in 1996 [37]. Several authors ascribe greater importance to 

metals such as Pb and Cd because these are mainly found in glass-clay containers [37,42–44], affording 

little importance to metals such as Co because its effects are not as severe as those reported for Cd  

and Pb. 

5. Conclusions 

The amount of leached metals by chickpea puree, which was at a pH of 6.0, was much less than that 

observed for acetic acid and green tomato sauce (salsa) at pH 4.2, which indicates that there is a pH 

dependence on a food’s ability to leach metals, with highly acidic foods causing the greatest leaching 

of metals from the containers. Based on these results, it is not recommended to use these containers in 

the preparation and storage of food, even for a short period. 

Acknowledgments 

The authors thank Veronica García Hernández (Área Académica de Ciencia de los Materiales, 

ICBI, UAEH) for his valuable technical assistance. 

References 

1. Picado, F.; Mendoza, A.; Cuadra, S.; Barmen, G.; Jakobsson, K.; Bengtsson, G. Ecological, 

groundwater, and human health risk assessment in a mining region of Nicaragua. Risk Anal. 2010, 

30, 916–933.  

2. Youns, M.; Hoheisel, J.D.; Efferth, T. Toxicogenomics for the prediction of toxicity related to 

herbs from traditional chinese medicine. Planta Med. 2010, 76, 2019–2025.  

3. Cook, A.G.; Weinstein, P.; Centeno, J.A. Health effects of natural dust: Role of trace elements 

and compounds. Biol. Trace Elem. Res. 2005, 103, 1–15. 

4. Massadeh, A.; Al-Momani, F.; Elbetieha, A. Assessment of heavy metals concentrations in soil 

samples from the vicinity of busy roads: Influence on Drosophila melanogaster life cycle. Biol. 

Trace. Elem. Res. 2007, 122, 1–8. 

5. Nobuntou, W.; Parkpian, P.; Oanh, N.T.; Noomhorm, A.; Delaune, R.D.; Jugsujinda, A. Lead 

distribution and its potential risk to the environment: Lesson learned from environmental 

monitoring of abandon mine. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2010, 

45, 1702–1714. 

http://www.ncbi.nlm.nih.gov/pubmed/20409041
http://www.ncbi.nlm.nih.gov/pubmed/20409041
http://www.ncbi.nlm.nih.gov/pubmed/20957595
http://www.ncbi.nlm.nih.gov/pubmed/20957595
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Nobuntou%20W%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Parkpian%20P%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Oanh%20NT%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Noomhorm%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Delaune%20RD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Jugsujinda%20A%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'J%20Environ%20Sci%20Health%20A%20Tox%20Hazard%20Subst%20Environ%20Eng.');


Int. J. Mol. Sci. 2011, 12           

 

 

2348 

6. Chang, L. Toxicology of Metals; CRC Lewis Publishers: Boca Raton, FL, USA, 1996;  

pp. 225–232. 

7. Abou-Arab, A.K.; Abou Donia, M.A. Heavy metals in egyptian spices and medicinal plants and 

the effect of processing on their levels. J. Agric. Food Chem. 2000, 48, 2300–2304. 

8. Bocio, A.; Nadal, M.; Domingo, J.L. Human exposure to metals through the diet in Tarragona, 

Spain: Temporal trend. Biol. Trace Elem. Res. 2005, 104, 193–201. 

9. Yun, Z.; Hui Y.; Junli W.; Wei, F.; Jiangang, Y.; Zhongyi, Y. Heavy metal accumulations of 24 

asparagus bean cultivars grown in soil contaminated with cd alone and with multiple metals (Cd, 

Pb, and Zn). J. Agric. Food Chem. 2007, 55, 1045–1052. 

10. Zukowska, J.; Biziuk, M. Methodological evaluation of method for dietary heavy metal intake.  

J. Food Sci. 2008, 73, R21–R29. 

11. Schütz, A.; Olsson, M.; Jensen, A.; Gerhardsson, L.; Börjesson, J.; Mattsson, S.; Skerfving, S. 

Lead in finger bone, whole blood, plasma and urine in lead-smelter workers: Extended exposure 

range. Int. Arch. Occup. Environ. Health 2005, 78, 35–43. 

12. Solliway, B.M.; Schaffer, A.; Pratt, H. Effects of exposure to lead on selected biochemical and 

haematological variables. Pharmacol. Toxicol. 1996, 78, 18–22. 

13. Hengstler, J.G.; Bolm-Auorff, U.; Faldum, A.; Janssen, K.; Reifenrath, M.; Gotte, W.; Jung, D.; 

Mayer-Popken, O.; Fuchs, J.; Gebhard, S.; Bienfait, H.G.; Schlink, K.; Dietrich, C.; Faust, D.; 

Epe, B.; Oesch, F. Occupational exposure to heavy metals: DNA damage induction and DNA 

repair inhibition prove co-exposures to cadmium, cobalt and lead as more dangerous than hitherto 

expected. Carcinogenesis 2003, 24, 63–73. 

14. García-Lestón, J.; Méndez, J.; Pásaro, E.; Laffon, B. Genotoxic effects of lead: An updated 

review. Environ. Int. 2010, 36, 623–636.  

15. Lepper, T.W.; Oliveira, E.; Koch, G.D.; Berlese, D.B.; Feksa, L.R. Lead inhibits in vitro creatine 

kinase and pyruvate kinase activity in brain cortex of rats. Toxicol. In Vitro 2010, 24, 1045–1051.  

16. Sorahan, T.; Esmen, N. Lung cancer mortality in UK nickel-cadmium battery workers, 1947–2000. 

Occup. Env. Med. 2004, 61, 108–116. 

17. Drebler, J.; Schulz, K.; Klemm, M.; Schuttig, R.; Beuthin, A.; Felscher, D. Lethal  

manganese-cadmium intoxication. A case report. Arch. Toxicol. 2002, 76, 449–451. 

18. Cvjetko, P.; Tolić, S.; Sikić, S.; Balen, B.; Tkalec, M.; Vidaković-Cifrek, Z.; Pavlica, M. Effect of 

copper on the toxicity and genotoxicity of cadmium in duckweed (Lemna Minor L). Arh. Hig. 

Rada. Toksikol. 2010, 61, 287–296. 

19. Lewis, R. Occupational exposures. In Occupational and Environmental Medicine; LaDou, J., Ed.; 

Appleton y Lange: Stamford, CT, USA, 1997; pp. 142–154. 

20. Dai, W.; Du, H.; Fu, L.; Jin, C.; Xu, Z.; Liu, H. Effects of dietary Pb on accumulation, 

histopathology, and digestive enzyme activities in the digestive system of tilapia (Oreochromis 

niloticus). Biol. Trace Elem. Res. 2009, 127, 124–131.  

21. Abraham, K.S.; Abdel-Gawad, N.B.; Mahmoud, A.M.; El-Gowaily, M.M.; Emara, A.M.;  

Hwaihy, M.M. Genotoxic effect of occupational exposure to cadmium. Toxicol. Ind. Health 2011, 

27, 123–127. 

 

http://www.ncbi.nlm.nih.gov/pubmed/15750821
http://www.ncbi.nlm.nih.gov/pubmed/15750821
http://www.ncbi.nlm.nih.gov/pubmed/8685081
http://www.ncbi.nlm.nih.gov/pubmed/8685081
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Garc%C3%ADa-Lest%C3%B3n%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22M%C3%A9ndez%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22P%C3%A1saro%20E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Laffon%20B%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Environ%20Int.');
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lepper%20TW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Oliveira%20E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Koch%20GD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Berlese%20DB%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Feksa%20LR%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Toxicol%20In%20Vitro.');
http://www.ncbi.nlm.nih.gov/pubmed/20860969
http://www.ncbi.nlm.nih.gov/pubmed/20860969
http://www.ncbi.nlm.nih.gov/pubmed/18825319
http://www.ncbi.nlm.nih.gov/pubmed/18825319
http://www.ncbi.nlm.nih.gov/pubmed/18825319
http://www.ncbi.nlm.nih.gov/pubmed/20870694


Int. J. Mol. Sci. 2011, 12           

 

 

2349 

22. Buchko, G.W.; Hess, N.J.; Kennedy, M.A. Cadmium mutagenicity and human nucleotide excision 

repair protein XPA: CD, EXAFS and (1)H/(15)N-NMR spectroscopic studies on the zinc(II)- and 

cadmium(II)-associated minimal DNA-binding domain (M98-F219). Carcinogenesis 2000, 21, 

1051–1057. 

23. Hartwig, A.; Asmuss, M.; Blessing, H. Interference by toxic metal ions with zinc-dependent 

proteins involved in maintaining genomic stability. Food Chem. Toxicol. 2002, 40, 1179–1184. 

24. Punsar, S.; Erämetsä, O.; Karvonen, M.J.; Ryhänen, A.; Hilska, P.; Vornamo, H. Coronary heart 

disease and drinking water. A search in two Finnish male cohorts for epidemiologic evidence of a 

water factor. J. Chronic. Dis. 1975, 28, 259–287. 

25. Hamilton, E.I. The geobiochemistry of cobalt. Sci. Total Environ. 1994, 150, 7–39. 

26. Delpeux, S.; Szostak, K.; Frackowiak, E.J. High yield of pure multiwalled carbon nanotubes from 

the catalytic decomposition of acetylene on in-situ formed cobalt nanoparticles. Nanosci. 

Nanotechnol. 2002, 2, 481–484. 

27. Coates, E.O.; Watson, J.H.L. Diffuse interstitial lung disease in tungsten carbide workers. Ann. 

Intern. Med. 1971, 75, 709–716. 

28. Pier, S.M. The role of heavy metals in human health. Tex. Rep. Biol. Med. 1975, 33, 85–106. 

29. Bucher, J.R.; Elwell, M.R.; Thompson, M.B. Inhalation toxicity studies of cobalt sulfate in 

F344/N rats and B6C3F1 mice. Fundam. Appl. Toxicol. 1990, 15, 357–372. 

30. Gulson, B.L.; Mizon, K.J.; Korsch, M.J.; Howarth, D. Non-orebody sources are significant 

contributors to blood lead of some children with low to moderate lead exposure in a major lead 

mining community. Sci. Total Environ. 1996, 181, 223–230. 

31. Mariné, A.F. Influencia del Medio Ambiente en Las Relaciones Entre la Alimentación y Salud; 

Departamento de Nutrición y Bromatología, Universidad de Barcelona: Barcelona, Spain, 2000; 

pp. 354–377.  

32. Garcia, M.; Quintero, R.; López-Munguia, A. Biotecnología Alimentaria; Goldberg, I., Ed.; 

Chapman & Hall: Limusa, Mexico, 2000; pp. 48–64. 

33. Wallace, D.M.; Kalman, D.A.; Bird, T.D. Hazardous lead release from glazed dinnerware: A 

cautionary note. Sci. Total Environ. 1985, 44, 289–292. 

34. Landa, E.R.; Councell, T.B. Leaching of uranium from glass and ceramic foodware and 

decorative items. Health. Phys. 1992, 63, 343–348. 

35. Hight, S.C. Determination of lead and cadmium in ceramicware leach solutions by graphite 

furnace atomic absorption spectroscopy: Method development and interlaboratory trial. J. AOAC 

Int. 2001, 84, 861–872. 

36. Villalobos, M.; Merino-Sánchez, C.; Hall, C.; Grieshop, J.; Gutiérrez-Ruiz, M.E.; Handley, M.A. 

Lead (II) detection and contamination routes in environmental sources, cookware and  

home-prepared foods from Zimatlán, Oaxaca, Mexico. Sci. Total Environ. 2009, 407, 2836–2844. 

37. González de Mejía, E.; Craigmill, A.L. Transfer of lead from lead-glazed ceramics to food. Arch. 

Environ. Contam. Toxicol. 1996, 31, 581–584. 

38. Alper-Baba, A.; Gulbin, G.; Sengunalp, F.; Ozay, O. Effects of leachant temperature and pH on 

leachability of metals from fly ash. A case study: Can thermal power plant, province of 

Canakkale, Turkey. Environ. Monit. Assess. 2008, 139, 287–298. 

http://www.ncbi.nlm.nih.gov/pubmed/10783332
http://www.ncbi.nlm.nih.gov/pubmed/10783332
http://www.ncbi.nlm.nih.gov/pubmed/10783332
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ryh%C3%A4nen%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hilska%20P%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Vornamo%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed/7939612
http://www.ncbi.nlm.nih.gov/pubmed/5122158
http://www.ncbi.nlm.nih.gov/pubmed/171792
http://www.monografias.com/Salud/Nutricion/
http://www.monografias.com/trabajos13/admuniv/admuniv.shtml
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wallace%20DM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kalman%20DA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bird%20TD%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Sci%20Total%20Environ.');
http://www.ncbi.nlm.nih.gov/pubmed/1322875
http://www.ncbi.nlm.nih.gov/pubmed/1322875
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hight%20SC%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'J%20AOAC%20Int.');
javascript:AL_get(this,%20'jour',%20'J%20AOAC%20Int.');
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Villalobos%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Merino-S%C3%A1nchez%20C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hall%20C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Grieshop%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Guti%C3%A9rrez-Ruiz%20ME%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Handley%20MA%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Sci%20Total%20Environ.');
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Gonz%C3%A1lez%20de%20Mej%C3%ADa%20E%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Craigmill%20AL%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
javascript:AL_get(this,%20'jour',%20'Arch%20Environ%20Contam%20Toxicol.');
javascript:AL_get(this,%20'jour',%20'Arch%20Environ%20Contam%20Toxicol.');


Int. J. Mol. Sci. 2011, 12           

 

 

2350 

39. Karen, W.; Barnes, E.D.; Zhang, L. The Nutritional Analysis of Corn Products, The Perkin-Elmer 

Corporation, ICP Aplication Study Number: 72, 1995; pp. 2–4. 

40. Glazed pottery, glazed pottery and porcelain. Limits soluble lead and cadmium. Test method. 

Norma Official Mexicana NOM-231-SSA1-2002, 1 August 2003. 

41. Gould, J.H.; Butler, S.W.; Boyer, K.W.; Steele, E.A. Hot leaching of ceramic and enameled 

cookware: Collaborative study. J. Assoc. Anal. Chem. 1983, 66, 610–619. 

42. Azcona-Cruz, M.I.; Rothenberg, S.J.; Schnaas, L.; Zamora-Munoz, J.S.; Romero-Placeres, M. 

Lead-glazed ceramic ware and blood lead levels of children in the city of Oaxaca, Mexico. Arch. 

Environ. Health. 2000, 55, 217–222. 

43. Gould, J.H.; Hight, S.C.; Alvarez, G.H.; Nelson, C.E.; Capar, S.G. Influence of automatic 

dishwashings and scrubbings on release of lead from glazed ceramicware. J. Assoc. Anal. Chem. 

1990, 73, 401–404. 

44. Sheets, R.W. Extraction of lead, cadmium and zinc from overglaze decorations on ceramic 

dinnerware by acidic and basic food substances. Sci. Total Environ. 1997, 197, 167–175. 

45. Matte, T.D.; Proops, D.; Palazuelos, E.; Graef, J.; Hernandez-Avila, M. Acute high-dose lead 

exposure from beverage contaminated by traditional Mexican pottery. Lancet 1994, 344,  

1064–1075. 

46. Hernandez-Avila, M.; Romieu, I.; Rios, C.; Rivero, A.; Palazuelos, E. Lead-glazed ceramics as 

major determinants of blood lead levels in Mexican women. Environ. Health Perspect. 1991, 94, 

117–120. 

47. Belgaied, J.E. Release of heavy metals from Tunisian traditional earthenware. Food Chem. 

Toxicol. 2003, 41, 95–98. 

48. Ajmal, M.; Khan, A.; Nomani, A.A.; Ahmed, S. Heavy metals: Leaching from glazed surfaces of 

tea mugs. Sci. Total Environ. 1997, 207, 49–54. 

49. Linna, A.; Oksa, P.; Groundstroem, K.; Halkosaari, M.; Palmroos, P.; Huikko, S.; Uitti, J. 

Exposure to cobalt in the production of cobalt and cobalt compounds and its effect on the heart. 

Occup. Environ. Med. 2004, 61, 877–885. 

50. Naura, A.S.; Sharma, R. Toxic effects of hexaammine cobalt (III) chloride on liver and kidney in 

mice: Implication of oxidative stress. Drug. Chem. Toxicol. 2009, 32, 293–299. 

51. Wild, P.; Bourgkard, E.; Paris, C. Lung cancer and exposure to metals: The epidemiological 

evidence. Method. Mol. Biol. 2009, 472, 139–167. 

52. Stefaniak, A.B.; Harvey, C.J.; Virji, M.A.; Day, G.A. Dissolution of cemented carbide powders in 

artificial sweat: Implications for cobalt sensitization and contact dermatitis. J. Environ. Monit. 

2010, 12, 1815–1822. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 

http://www.ncbi.nlm.nih.gov/pubmed/7934450
http://www.ncbi.nlm.nih.gov/pubmed/7934450
http://www.ncbi.nlm.nih.gov/pubmed/1954921
http://www.ncbi.nlm.nih.gov/pubmed/1954921
http://www.ncbi.nlm.nih.gov/pubmed/12453733
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Linna%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Oksa%20P%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Groundstroem%20K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Halkosaari%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Palmroos%20P%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Huikko%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Uitti%20J%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Occup%20Environ%20Med.');
http://www.ncbi.nlm.nih.gov/pubmed/19538027
http://www.ncbi.nlm.nih.gov/pubmed/19538027
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wild%20P%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bourgkard%20E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Paris%20C%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Methods%20Mol%20Biol.');
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Stefaniak%20AB%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Harvey%20CJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Virji%20MA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Day%20GA%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'J%20Environ%20Monit.');

